• Title/Summary/Keyword: 입자의 크기

Search Result 4,067, Processing Time 0.042 seconds

A review of factors that regulate extracellular enzyme activity in wetland soils (습지 토양 내 체외효소 활성도를 조절하는 인자에 대한 고찰)

  • Kim, Haryun
    • Korean Journal of Microbiology
    • /
    • v.51 no.2
    • /
    • pp.97-107
    • /
    • 2015
  • Wetlands constitute a transitional zone between terrestrial and aquatic ecosystems and have unique characteristics such as frequent inundation, inflow of nutrients from terrestrial ecosystems, presence of plants adapted to grow in water, and soil that is occasionally oxygen deficient due to saturation. These characteristics and the presence of vegetation determine physical and chemical properties that affect decomposition rates of organic matter (OM). Decomposition of OM is associated with activities of various extracellular enzymes (EE) produced by bacteria and fungi. Extracellular enzymes convert macromolecules to simple compounds such as labile organic carbon (C), nitrogen (N), phosphorus (P), and sulfur (S) that can be easily taken up by microbes and plants. Therefore, the enzymatic approach is helpful to understand the decomposition rates of OM and nutrient cycling in wetland soils. This paper reviews the physical and biogeochemical factors that regulate extracellular enzyme activities (EEa) in wetland soils, including those of ${\beta}$-glucosidase, ${\beta}$-N-acetylglucosaminidase, phosphatase, arylsulfatase, and phenol oxidase that decompose organic matter and release C, N, P, and S nutrients for microbial and plant growths. Effects of pH, water table, and particle size of OM on EEa were not significantly different among sites, whereas the influence of temperature on EEa varied depending on microbial acclimation to extreme temperatures. Addition of C, N, or P affected EEa differently depending on the nutrient state, C:N ratio, limiting factors, and types of enzymes of wetland soils. Substrate quality influenced EEa more significantly than did other factors. Also, drainage of wetland and increased temperature due to global climate change can stimulate phenol oxidase activity, and anthropogenic N deposition can enhance the hydrolytic EEa; these effects increase OM decomposition rates and emissions of $CO_2$ and $CH_4$ from wetland systems. The researches on the relationship between microbial structures and EE functions, and environmental factors controlling EEa can be helpful to manipulate wetland ecosystems for treating pollutants and to monitor wetland ecosystem services.

The Neutralization Treatment of Waste Mortar and Recycled Aggregate by Using the scCO2-Water-Aggregate Reaction (초임계이산화탄소-물-골재 반응을 이용한 폐모르타르와 순환골재의 중성화 처리)

  • Kim, Taehyoung;Lee, Jinkyun;Chung, Chul-woo;Kim, Jihyun;Lee, Minhee;Kim, Seon-ok
    • Economic and Environmental Geology
    • /
    • v.51 no.4
    • /
    • pp.359-370
    • /
    • 2018
  • The batch and column experiments were performed to overcome the limitation of the neutralization process using the $scCO_2$-water-recycled aggregate, reducing its treatment time to 3 hour. The waste cement mortar and two kinds of recycled aggregate were used for the experiment. In the extraction batch experiment, three different types of waste mortar were reacted with water and $scCO_2$ for 1 ~ 24 hour and the pH of extracted solution from the treated waste mortar was measured to determine the minimum reaction time maintaining below 9.8 of pH. The continuous column experiment was also performed to identify the pH reduction effect of the neutralization process for the massive recycled aggregate, considering the non-equilibrium reaction in the field. Thirty five gram of waste mortar was mixed with 70 mL of distilled water in a high pressurized stainless steel cell at 100 bar and $50^{\circ}C$ for 1 ~ 24 hour as the neutralization process. The dried waste mortar was mixed with water at 150 rpm for 10 min. and the pH of water was measured for 15 days. The XRD and TG/DTA analyses for the waste mortar before and after the reaction were performed to identify the mineralogical change during the neutralization process. The acryl column (16 cm in diameter, 1 m in length) was packed with 3 hour treated (or untreated) recycled aggregate and 220 liter of distilled water was flushed down into the column. The pH and $Ca^{2+}$ concentration of the effluent from the column were measured at the certain time interval. The pH of extracted water from 3 hour treated waste mortar (10 ~ 13 mm in diameter) maintained below 9.8 (the legal limit). From XRD and TG/DTA analyses, the amount of portlandite in the waste mortar decreased after the neutralization process but the calcite was created as the secondary mineral. From the column experiment, the pH of the effluent from the column packed with 3 hour treated recycled aggregate kept below 9.8 regardless of their sizes, identifying that the recycled aggregate with 3 hour $scCO_2$ treatment can be reused in real construction sites.

Monitoring of the Suspended Sediments Concentration in Gyeonggi-bay Using COMS/GOCI and Landsat ETM+ Images (COMS/GOCI 및 Landsat ETM+ 영상을 활용한 경기만 지역의 부유퇴적물 농 도 변화 모니터링)

  • Eom, Jinah;Lee, Yoon-Kyung;Choi, Jong-Kuk;Moon, Jeong-Eon;Ryu, Joo-Hyung;Won, Joong-Sun
    • Economic and Environmental Geology
    • /
    • v.47 no.1
    • /
    • pp.39-48
    • /
    • 2014
  • In coastal region, estuaries have complex environments where dissolved and particulate matters are mixed with marine water and substances. Suspended sediment (SS) dynamics in coastal water, in particular, plays a major role in erosion/deposition processes, biomass primary production and the transport of nutrients, micropollutants, heavy metals, etc. Temporal variation in suspended sediment concentration (SSC) can be used to explain erosion/sedimentation patterns within coastal zones. Remotely sensed data can be an efficient tool for mapping SS in coastal waters. In this study, we analyzed the variation in SSC in coastal water using the Geostationary Ocean Color Imager (GOCI) and Landsat Enhanced Thematic Mapper Plus (ETM+) in Gyeonggi-bay. Daily variations in GOCI-derived SSC showed low values during ebb time. Current velocity and water level at 9 and 10 am is 37.6, 28.65 $cm{\cdot}s^{-1}$ and -1.23, -0.61 m respectively. Water level has increased to 1.18 m at flood time. In other words, strong current velocity and increased water level affected high SSC value before flood time but SSC decreased after flood time. Also, we compared seasonal SSC with the river discharge from the Han River and the Imjin River. In summer season, river discharge showed high amount, when SSC had high value near the inland. At this time SSC in open sea had low value. In contrast, river discharge amount from inland showed low value in winter season and, consequently, SSC in the open sea had high value because of northwest monsoon.

Physicochemical properties of spray-dried rice flour with Lactobacillus plantarum CGKW3 (분무건조공정을 이용한 유산균포집 미분의 제조 및 물리화학적 특성)

  • Park, Hye-Mi;Lee, Dae-Hoon;Jeong, Yoo-Seok;Jung, Hee-Kyoung;Cho, Jae-Gon;Hong, Joo-Heon
    • Food Science and Preservation
    • /
    • v.22 no.3
    • /
    • pp.392-398
    • /
    • 2015
  • The physicochemical properties of spray-dried rice flour with Lactobacillus plantarum CGKW3 were investigated. Amylose and damaged starch contents of spray-dried rice flour (S10, S20, S30, and S50) with L. plantarum CGKW3 were 14.18~17.75% and 24.65~34.08%, respectively. The particle size of spray-dried rice flour was $82.28{\sim}131.17{\mu}m$. The rice flour with L. plantarum CGKW3 showed a good powder flowability. The water absorption and water solubility of spray-dried rice flour were 1.96~2.13 and 9.91~21.95%, respectively. Thermal properties measured by differential scanning calorimeter revealed that the enthalpy (${\Delta}H$) for starch gelatinization were highest in the rice flour (S50) with L. plantarum CGKW3. When compared, the viable cell number of spray-dried rice flour were found to be in the following order: S10 (5.78 log CFU/g) < S20 (6.38 log CFU/g) < S30 (6.69 log CFU/g) < S50 (7.11 log CFU/g). The survaival rate of L. plantarum CGKW3 was 60.02-73.85%, which reflected the improvement in the quality of rice flour with an increase in treatment concentration. Based on our results, spray-dried rice flour with L. plantarum CGKW3 could be used in various types of rice foods.

Study for the Conservation Treatment of the Stele for National Preceptor Hongbeop from the Jeongtosa Temple Site in Chungju (충주 정토사지 홍법국사탑비의 보존과학적 연구)

  • Chae, Woomin;Hwang, Hyunsung
    • Conservation Science in Museum
    • /
    • v.19
    • /
    • pp.1-18
    • /
    • 2018
  • The Stele for National Preceptor Hongbeop from the Jeongtosa Temple site in Chungju is one of the most important stone cultural heritage items for exemplifying the style of the Goryeo era. Despite its obvious value, this relic has been stored in a weathered condition at the National Museum of Korea. It had suffered various dismantling and displacements during the Japanese colonial period and had long been exposed in the open air. The stele was selected as a subject for the Stone Monuments Restoration Project launched by the National Museum of Korea in 2015. In preparation for its outdoor exhibition as part of the restoration project, this study investigated the characteristics of its materials, produced a map of its deterioration from weathering, and carried out ultrasonic analysis of the materials to provide findings useful for conservation treatment. The materials analysis revealed that the turtle-shaped pedestal of the stele was made from two-mica granite consisting of medium-grained quartz, plagioclase, alkali feldspar, biotite, and muscovite. Its body stone is crystalline marble, the rock-forming mineral in which is medium-grained calcite in a rose-pink color with dark grey spots. The dragon top of the stele is made of crystalline marble, the major component of which is medium-grained calcite of a light-grey color. The deterioration consists of 21.5% abrasion on the stone body, with its south face most damaged, and 18.6% granular disintegration, with the north face most damaged. The ultrasonic material characterization conducted for mapping the general condition of weathering shows low values on the parts-assembly area of the turtle-shaped pedestal and on the upper portion of the stone body. It is considered that there is dislocation due to partial blistering and fracturing as well as to the differences in surface treatment. Prior to the outdoor exhibition of the stele, the surface was cleaned of contaminants and was consolidated based on the scientific investigation in order to prevent weathering from the external environment.

Development and Validation of the Determination of Sorafenib in Human Plasma using Tandem Mass Spectrometry Coupled with Liquid Chromatography (고속액체크로마토그래피 텐덤질량분석기법을 이용한 사람 혈장 내 소라페닙 농도분석법의 개발 및 검정)

  • Park, Daejin;Lee, Sunggon;Kim, Woomi
    • Journal of Life Science
    • /
    • v.22 no.11
    • /
    • pp.1456-1462
    • /
    • 2012
  • Sorafenib is a multikinase inhibitor and an oral anticancer drug approved for the treatment of patients with advanced renal cell carcinoma and those with unresectable hepatocellular carcinoma. The purpose of this study was to develop an efficient method of the determination of sorafenib in human plasma using tandem mass spectrometry coupled with liquid chromatography (LC/MS/MS) and validate the method by the guidelines of the Korean Food and Drug Administration (KFDA). Plasma samples ($100{\mu}l$) were added with chlorantraniliprole as an internal standard and then mixed with the 0.1% formic acid-containing extraction solution composed of isopropyl alcohol and ethyl acetate (1:4, v/v). After centrifugation, the supernatant was concentrated at $45^{\circ}C$ under negative pressure and centrifugal force. The residue was reconstituted with a mobile phase and injected into the HPLC instrument using a reverse phase Waters XTerra$^{TM}$ C18 column (particle size $3.5{\mu}m$). Liquid chromatography was carried out within the run time of 5 min using a mobile phase composed of buffer (0.1% formic acid and 10 mM ammonium formate), methanol, and acetonitrile (1:6:3, v/v/v). The analytes were monitored by tandem mass spectrometry in the multiple reaction monitoring method programmed to detect sorafenib at 'm/z 465.2 ${\rightarrow}$ 252.5' and chlorantraniliprole at 'm/z 484.4 ${\rightarrow}$ 286.2' with positive electrospray ionization mode ($ES^+$). The result showed the proper linearity ($r^2$ > 0.99) over the range of 2,000-5,000 ng/ml with good accuracy (90.7-103.9%) and precision (less than 10%). The newly developed method using LC/MS/MS was validated by the guideline of KFDA and identified as more sensitive compared to the previous methods.

Changes in Chemical Composition of glutinous rice during steeping and Quality Properties of Yukwa (찹쌀의 수침 중 이화학적 특성변화와 유과의 품질특성)

  • Lee, Yong-Hwan;Kum, Jun-Seok;Ku, Kyung-Hyung;Chun, Hyang-Sook;Kim, Woo-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.6
    • /
    • pp.737-744
    • /
    • 2001
  • This study was carried to investigate the changes in physical and chemical properties during preparation of Yukwa. Protein content of glutinous rice was decreased during soaking time and acid and pH values were increased while contents of lipid and ash were not changed. Particle size distribution showed thate average particle size of 7 days soaking treatment smaller than those of 3 days and starch damage of glutinous rice flour was increased during soaking time. The major flavor components after soaking were found ethyl ester acetic acid, ethanol, 2-butan -ol, 2-methyl 1-propanol, 1-butanol, 3-methyl 1-butanol and 1-pentanol, propanoic acid. Content of acetic acid and butanoic acid were rapidly increased during soaking time. Results for ratio of storage modulus(G') and loss modulus(G') in glutinous rice flour dough indicated $tan{\delta}$ was increased for a while and decreased as frequency increased. G' value was very similar with G' value after steaming which means rubber-like property while G' and G' value were changed after during storage time. Treatment at $-20^{\circ}C$ had the highest hardness for cutting degree of dough. There was no difference in color value between different water contents. Hardness of Bandegi (sheet) was decreased as water content increased and the highest popping value was obtained at 18% of water contents. Adding 3% soaked bean had higher redness value of Yukwa and lower value in yellowness.

  • PDF

Sensitivity of NOx Removal on Recycled TiO2 in Cement Mortar (재생 이산화티탄을 혼입한 모르타르의 NOx 저감률 민감도 분석)

  • Rhee, Inkyu;Kim, Jin-Hee;Kim, Jong-Ho;Roh, Young-Sook
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.388-395
    • /
    • 2016
  • This paper explores the photocatalytic sensitivity of cement mortar incorporated with recycled $TiO_2$ from waste water sludge. Basically, $TiO_2$ cluster sank down slowly to the bottom of cement mortar specimen before setting and hardening process. This leads the mismatch of $TiO_2$ concentration on the top and the bottom faces of a specimen. This poorly dispersed $TiO_2$-cement mortar naturally exhibits poor NOx removal efficiency especially on the top of cementitious structure. In architectural engineering application such as building or housing structures, one can simply filp over from the bottom so that more $TiO_2$ concentrated surface can be placed outward into the air. However, in highway pavement case, this could not be applicable due to in-situ installation of concrete pavement. Hence, the dispersion of $TiO_2$ cluster inside the cementitous material is getting important issue onto road construction application. To elaborate this issue, according to our results, silica fume, high-ranged water reducer, viscosity agent, blast furnace slag were not enhanced much of dispersion characteristics of $TiO_2$ cluster. The combination of foaming agent and accelerator of hardening with viscosity agent and small grain size of fine aggregate may help the dispersion of $TiO_2$ inside cementitious materials. Even though the enhanced dispersion were applied to the specimen, NOx removal efficiency doest not change much for the top surface of the specimen. This concurrently affected by the presence of tiny air voids and the dispersion of $TiO_2$ in that these voids could easily adsorbed NOx gas with the aid of large surface area.

The Effect of BaF2 Particle Size for Zirconium Recycling by Precipitation from Waste Acid and Ba2ZrF8 Vacuum Distillation Property (폐 산세 용액으로부터 공침 반응에 의한 지르코늄 회수 시 BaF2 입도 영향 및 Ba2ZrF8의 진공증류 특성)

  • Choi, Jeong Hun;Nersisyan, Hayk;Han, Seul Ki;Kim, Young Min;Park, Cheol-Ho;Kahng, Jong Won;Na, Ki Hyun;Kim, Jeong hun;Lee, Jong Hyeon
    • Resources Recycling
    • /
    • v.26 no.6
    • /
    • pp.29-37
    • /
    • 2017
  • Nuclear fuel cladding tube is fabricated by pilgering and annealing process. In order to remove impurity and oxygen layer on the surface, pickling process is carried out. When Zirconium(Zr) is dissolved and saturated in acid solution during the pickling process, all the waste acid including Zr is disposed. Therefore, $BaF_2$ is added into the waste acid to extract Zr and $Ba_2ZrF_8$ is subsequently formed. To recycle Zr by electrowinning process, $Ba_2ZrF_8$ is used as electrolyte, but it has high melting point ($1053^{\circ}C$). $ZrF_4$ should be added into $Ba_2ZrF_8$ to decrease the melting point. In this paper, it was investigated that $Ba_2ZrF_8$ was separated to $BaF_2$ and $ZrF_4$ by vacuum distillation. Firstly, $BaF_2$ with different particle size ($1{\mu}m$, $35{\mu}m$, $110{\mu}m$) was added into the waste acid and the respective precipitation property was estimated. $BaF_2$ obtained by vacuum distillation was shattered by ball-milling with different time. The precipitation efficiency was compared with $1{\mu}m$ of ${BaF_2}^{\prime}s$ one, which was not used as precipitation agent.

Epidermal Changes of the Adhesive Disks During Wall Attachment in Parthenocissus tricuspidata (착생에 따른 담쟁이덩굴 흡착근 표피조직의 변화)

  • Kim, Jung-Ha;Kim, In-Sun
    • Applied Microscopy
    • /
    • v.37 no.2
    • /
    • pp.83-91
    • /
    • 2007
  • The present study examined the epidermal changes of adhesive disks which occur during attachment in Parthenocissus tricuspidata using scanning and transmission electron microscopy. Several adhesive disks, each covered with a bract, develop from the shoot apical meristem during early development. In the initial stage, the adhesive disks are club-shaped and their upper and lower epidermis are indistinguishable. However, in the actively growing stage, they become spherical and both epidermis are clearly differentiated into the adventitious roots. Prior to wall attachment, the adhesive disks exhibit adaxial convex and abaxial concave shapes, and electron-dense substances are abundant in the vacuoles of epidermal cells. The peripheral area of the adhesive disk is adhered first to the wall surface, while the central area is drawn inward in a vacuum-like state during attachment. As the attachment progresses and the electron-dense substances continue to discharge, the upper and lower epidermis rapidly undergo deterioration and the disks shrink considerably. At this stage, structural changes of the lower epidermis occur much faster than in the upper one. The discharged substance is accumulated on the wall surface, and this aids the attachment of adhesive disks on the wall for long periods. In this manner, the shape and structure of the adhesive disk epidermis change drastically from initial growth to the mature stage. Further, the role of electron-dense substance and shrinkage of the disk during attachment has been discussed in Parthenocissus tricuspidata.