• Title/Summary/Keyword: 입자상 물질 질량

Search Result 13, Processing Time 0.024 seconds

A Study on Mass Fractions of Individual Particles by SEM/EDX in Seoul Subway Stations (SEM/EDX를 이용한 서울시 지하철 역사 내 개별입자의 질량분율에 관한 연구)

  • 한근혁;김동술
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.04a
    • /
    • pp.249-250
    • /
    • 2002
  • 입자상 물질은 호흡에 의해 폐 깊숙이 침착되어 인체에 피해를 줄 수 있다 같은 질량의 거대 및 미세 입자가 있을 경우, 입자의 크기가 작아짐에 따라 비표면적이 급속히 커지기 때문에 입자가 유해 중금속 성분을 함유하고 있을 경우 그 중금속의 농축 정도가 크다. 지하철 역사는 사람들이 가장 많이 생활하는 지하 공간중의 하나이며, 유동인구가 많아 입자상 물질의 발생이 심한 지역으로 외기에 비해 희석, 화산 공간이 크지 않기 때문에 역사 내 유해 환경 오염 물질의 영향과 관리 대책에 대한 연구가 진행되고 있다. (중략)

  • PDF

Study on the Regional Deposition of Smoke Particles in Human Respiratory Tract under the Variation of Fire and Breathing Conditions (화재 및 호흡조건 변화에 따른 연기입자의 인체 호흡기 내 영역별 침착량 분석)

  • Goo, Jaehark
    • Fire Science and Engineering
    • /
    • v.33 no.6
    • /
    • pp.95-104
    • /
    • 2019
  • Smoke generated in a fire consists of gaseous substances and particulate matter, such as unburned carbon that adsorbed the gases. Human injury caused by inhalation of gaseous substances present in smoke is mostly short-term, whereas damage caused by inhalation of particulate matter is relatively a long-term phenomenon depending on the state of the gas-phase adsorption. The amount and location of the deposited smoke particles are important factors in estimating the damage caused to humans, which are affected by the breathing conditions as well as particle conditions, such as the size and concentration affected by the combustion conditions. In this study, in order to understand the characteristics of the deposition of smoke particles in the respiratory tract related to the study of human smoke inhalation injury, the number and mass concentration of smoke particles deposited in different areas of the respiratory tract for different fuel types, combustion conditions and breathing conditions were calculated. In addition, the amount of mass deposition of smoke in the respiratory tract for a certain period of inhalation was compared with the atmospheric standard of fine dust.

Concentrations of metallic elements and efficiency of cascade impactor by particle size distribution (분진의 입경분포에 마른 중금속 농도 및 cascade impactor의 효율)

  • 김성천;김광석
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.11a
    • /
    • pp.296-297
    • /
    • 2002
  • 입자상 오염물질은 공기역학적 직경 2.5$\mu\textrm{m}$를 기준으로 미세입자와 거대입자로 나누어지는 쌍극분포의 형태(Whitby et at., 1972)를 나타내며, 분진이 인체에 미치는 영향에 관한 많은 연구를 통해 10$\mu\textrm{m}$ 이하의 입자가 호흡성 분진으로 인체에 더 유해한 영향을 미치고 있음이 밝혀졌다(Emison, 1988). 이러한 특징은 동일 질량의 분진을 가정할 때 입자의 직결이 작아질수록 저감효율이 떨어지며, 분진의 표면적이 커져 중금속이나 가스상 오염물질의 흡착이 상대적으로 용이해지기 때문이다(Saffiotti, 1965). (중략)

  • PDF

PM Reduction Characteristics of Gasoline Direct Injection Engines with Different Types of GPFs (GPF 종류에 따른 직접분사식 가솔린 엔진의 입자상 물질 저감특성)

  • Yi, Ui Hyung;Park, Cheolwoong;Lee, Sunyoup;Lim, Jong Han
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.4
    • /
    • pp.351-358
    • /
    • 2015
  • In the recent times, the use of gasoline direct injection (GDI) engines has been regarded as a means of enhancing conformance to emission regulations and improving fuel efficiency. GDI engines have been widely adopted in the recent years for their better engine performance and fuel economy compared to those of conventional MPI gasoline engines. However, they present some disadvantages related to the mass and quantity of particulate matter generated during their use. This study investigated the nanoparticle characteristics of the particulate matter exhausted from a GDI engine vehicle installed with different types of gasoline particulate filters, after subjecting it to ultra-lean burn driving conditions. Three metal foam and metal fiber filters were used for each experimental condition. The number concentrations of particles were analyzed for understanding their behavior, and the reduction characteristics were obtained for each type of filter.

Temporal Variation of Particulate Matters and PAHs in Seoul (서울지역에서 대기 중 분진 및 입자상 PAHs 농도의 시간적 분포 특성)

  • 송은주;이유진;최지예;이지이;김용표
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.341-342
    • /
    • 2003
  • 대기 중의 부유분진 (suspended particulate matters)은 대기오염을 측정하는 일반지표 중의 한 항목으로, 보통 대기의 단위부피당 질량으로 그 오염정도를 판단하고 있다. 대기 중 부유분진은 입경별 농도분포에 따라 통해 오염원의 특성을 파악할 수 있고, 여러 오염원에서 배출되어지는 여러 화학물질들로 구성되어 있기 때문에 인체 위해성 측면에서 많은 관심의 대상이 되어 왔다. 또한 다환방향족탄화수소 (Polycyclic Aromatic Hydrocarbons, PAHs)는 환경에 존재하는 중요한 발암물질이자 돌연변이 유도체이다.(중략)

  • PDF

Particle Analysis of Uranium Bearing Materials Using Ultra High-resolution Isotope Microscope System (초고분해능 동위원소현미경 시스템을 활용한 우라늄 핵종 입자 분석 기술)

  • Jeongmin Kim;Yuyoung Lee;Jung Youn Choi;Haneol Lee;Hyunju Kim
    • Economic and Environmental Geology
    • /
    • v.56 no.5
    • /
    • pp.557-564
    • /
    • 2023
  • Nuclear materials such as uranium are used as fuel for nuclear power generation, but there is a high possibility that they will be used for non-peaceful purposes, so international inspections and regulations are being conducted. Isotope analysis data of fine particulate obtained from nuclear facilities can provide important information on the origin and concentration method of nuclear material, so it is widely used in the field of nuclear safety and nuclear forensics. In this study we describe the analytical method that can directly identify nuclear particles and measure their isotopic ratios for fine samples using a large-geometry secondary ion mass spectrometer and introduce its preliminary results. Using the U-200 standard material, the location of fine particles was identified and the results consistent with the standard value were obtained through microbeam analysis.

A Study on the Measurement of the Dimensionless Light Extinction Constant for Particulate Matter from Fuel Oil for Marine and Land Diesel Engines (선박 및 육상 디젤 엔진용 연료유에서 발생하는 입자상물질에 대한 무차원 광소멸계수 계측에 관한 연구)

  • Rho, Beom-Seok;Choi, Jae-Hyuk;Cho, Kwon-Hae;Park, Seul-Hyun;Lee, Won-Ju
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.2
    • /
    • pp.275-281
    • /
    • 2018
  • It is known that he pollutant emitted from the combustion process of marine fuel oil causes air pollution and harmful effects to the human body. Accordingly, IMO regulates pollutants emitted from ships. However, the regulation of Particulate Matter (PM) is still in the process of debate, so preemptive action is needed. Fundamental research on PM is essential. In this study, the Dimensionless Light Extinction Constant ($K_e$) of fuel oil used in marine diesel engines was measured and analyzed to construct the basic data of the PM generated from marine-based fuel oil. The fuel oil used in the land diesel engine was measured in the same way for character comparison. Both fuel oils differ in sulfur content and density. The $K_e$ was measured via the optical method using a 633 nm laser and was determined by using the volume fraction of PM collected by the gravimetric filter method. The $K_e$ of the PM discharged from marine fuel oil is 8.28, and the land fuel oil is 8.44. The $K_e$ of two fuel oils was similar within the measurement uncertainty range. However, it was found by comparison with the value obtained by the Rayleigh-Limit solution that the light scattering portion could be large. Also, it was found that light extinction characteristics could be different due to the relationship between light transmittance and collected mass.

Reduction of Nitrate-Nitrogen by Zero-valent Iron Nanoparticles Deposited on Aluminum yin Electrophoretic Method (전기영동법으로 알루미늄에 침적된 영가 철 나노입자에 의한 질산성 질소의 환원)

  • Ryoo, Won
    • Clean Technology
    • /
    • v.15 no.3
    • /
    • pp.194-201
    • /
    • 2009
  • Reductive reactivity of zero-valent iron nanoparticles was investigated for removal of nitrate-nitrogen which is considered one of the major water pollutants. To elucidate the difference in reactivity between preparation methods, iron nanoparticles were synthesized respectively from microemulsion and aqueous solution of ferric ions. Iron nanoparticles prepared from microemulsion were deposited on aluminum by electrophoretic method, and their reaction kinetics was compared to that of the same nanoparticles suspended in aqueous batch reaction. With an approximation of pseudo-first-order reaction, rate constants for suspended nanoparticles prepared from microemulsion and dilute aqueous solution were $3.49{\times}10^{-2}min^{-1}$ and $1.40{\times}10^{-2}min^{-1}$, respectively. Iron nanoparticles supported on aluminum showed ca. 30% less reaction rate in comparison with the identical nanoparticles in suspended state. However, supported nanoparticles showed the superior effectiveness in terms of nitrate-nitrogen removal per zero-valent iron input especially when excess amounts of nitrates were present. Iron nanoparticles deposited on aluminum maintained reductive reactivity for more than 3 hours, and produced nitrogen gas as a final reduction product of nitrate-nitrogen.

Chemical Composition Characteristics of Fine Particulate Matter at Atmospheric Boundary Layer of Background Area in Fall, 2012 (배경지역 대기경계층 미세먼지의 화학조성 특성: 2012년 가을 측정)

  • Ko, Hee-Jung;Lee, Yoon-Sang;Kim, Won-Hyung;Song, Jung-Min;Kang, Chang-Hee
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.3
    • /
    • pp.267-276
    • /
    • 2014
  • The collection of $PM_{10}$ and $PM_{2.5}$ fine particulate matter samples was made at the 1100 m site of Mt. Halla of Jeju Island, located at the atmospheric boundary layer (ABL) of background area, during the fall of 2012. Their ionic and elemental species were analyzed, in order to investigate the chemical compositions and size distribution characteristics. In $PM_{2.5}$ fine particles ($d_p$ < $2.5{\mu}m$), the concentrations of the secondary formed nss-$SO{_4}^{2-}$, $NH_4{^+}$ and $NO_3{^-}$ species were 4.84, 1.98, and $1.27{\mu}g/m^3$, respectively, showing 58.2% of the total $PM_{2.5}$ mass. On the other hand, their concentrations in $PM_{10-2.5}$ coarse particles (2.5 < $d_p$ < $10{\mu}m$) were 0.63, 0.21 and $1.10{\mu}g/m^3$, respectively, occupying 22.8% of the total $PM_{10-2.5}$ mass. The comparative study of size distribution has resulted that $NH_4{^+}$, nss-$SO{_4}^{2-}$, $K^+$ and $CH_3COO^-$ are mostly existed in fine particles, and $NO_3{^-}$ is distributed in both fine and coarse particles, but $Na^+$, $Cl^-$, $Mg^{2+}$ and nss-$Ca^{2+}$ are rich in coarse particle mode.

Properties of Powder and Fluorescence as a Function of Oxygen Partial Pressure in ZnO : Zn System Prepared by Glycine Nitrate Process (GNP 방식으로 제초한 ZnO : Zn의 산소분압에 따른 분말특성 및 형광특성)

  • Choi, Woo-Sung;Park, Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.378-382
    • /
    • 1999
  • 저 전압용 형광체는 최근에 활발히 연구가 진행되고 있으며 가장 대표적인 형광체가 ZnO Zn 녹색 형광체이다. ZnO : Zn 형광체는 자체발광형 형광체로써 ZnO을 환원분위기 하에서 열처리를 함으로써 얻을 수 있다. 본 연구에서는 자발착화 연소반응법(Glycine Nitrate Process)을 이용하여 ZnO : Zn 분말을 합성하고 형광특성 및 분말특성을 알아보았다. 출발물질로는 Zn Nitrate와 Glycine을 이용하였고 자발연소 반웅이 발생하는데 적절한 글리신의 양을 확인하기 위해서 글리신과 양이온의 비를 변화시키며 ZnO를 합성하였다. 그리고 Zn Excess가 생겨난 앙과 그에 따른 형광특성을 관찰하기 위해 $N_2$ 분위기 에서 각기 50$0^{\circ}C$, 75$0^{\circ}C$, 95$0^{\circ}C$의 온도에서 열처리를 행하였다. 제조된 ZnO 분말의 입자형태와 결정상 태는 SEM과 XRD를 이용하여 분석하였고 TG-DTA를 측정하여 열처리온도에 따른 질량감소(Zn excess)를 관찰하였다. 또 Particle size analyzer로 분말의 크기를 알아보았고 형광체로써의 발광특성을 살펴보기 위해 PL을 이용하여 발광피크를 관찰하였다.

  • PDF