• Title/Summary/Keyword: 입자군집 최적화

Search Result 87, Processing Time 0.032 seconds

Structural Design of Radial Basis Function-based Polynomial Neural Networks by Using Multiobjective Particle Swarm Optimization (다중목적 입자군집 최적화 알고리즘을 이용한 방사형 기저 함수 기반 다항식 신경회로망 구조 설계)

  • Kim, Wook-Dong;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1966-1967
    • /
    • 2011
  • 본 연구에서는 방사형 기저 함수를 이용한 다항식 신경회로망(Polynomial Neural Network) 분류기를 제안한다. 제안된 모델은 PNN을 기본 구조로 하여 1층의 다항식 노드 대신에 다중 출력 형태의 방사형 기저 함수를 사용하여 각 노드가 방사형 기저 함수 신경회로망(RBFNN)을 형성한다. RBFNN의 은닉층에는 fuzzy 클러스터링을 사용하여 입력 데이터의 특성을 고려한 적합도를 사용하였다. 제안된 분류기는 입력변수의 수와 다항식 차수가 모델의 성능을 결정함으로 최적화가 필요하며 본 논문에서는 Multiobjective Particle Swarm Optimization(MoPSO)을 사용하여 모델의 성능뿐만 아니라 모델의 복잡성 및 해석력을 고려하였다. 패턴 분류기로써의 제안된 모델을 평가하기 위해 Iris 데이터를 이용하였다.

  • PDF

Study on Optimization of Propellant Shape with Two-side Burning Surface for Continuous Variable Thruster (연속가변형 추력기용 이면연소 추진제 형상 최적화 연구)

  • Heo, Junyoung;Park, Iksoo;Jin, Jungkun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.364-367
    • /
    • 2017
  • The basic design concept of the DACS(Divert and Attitude Control System) propellant is presented and the geometry optimization of the DACS propellant with limited outer diameter and maximum burning rate of the propellant is performed. Two-side burning surface conditions burned at the core and the one side of the propellant are applied to the propellant. And the optimized values for the radius of core, length of propellant, angle of end-side surface are obtained by the PSO algorithm. The direction for DACS propellant design is suggested by analyzing optimized design points for various burning rate.

  • PDF

Design of Nonlinear Model Using Type-2 Fuzzy Logic System by Means of C-Means Clustering (C-Means 클러스터링 기반의 Type-2 퍼지 논리 시스템을 이용한 비선형 모델 설계)

  • Baek, Jin-Yeol;Lee, Young-Il;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.842-848
    • /
    • 2008
  • This paper deal with uncertainty problem by using Type-2 fuzzy logic set for nonlinear system modeling. We design Type-2 fuzzy logic system in which the antecedent and the consequent part of rules are given as Type-2 fuzzy set and also analyze the performance of the ensuing nonlinear model with uncertainty. Here, the apexes of the antecedent membership functions of rules are decided by C-means clustering algorithm and the apexes of the consequent membership functions of rules are learned by using back-propagation based on gradient decent method. Also, the parameters related to the fuzzy model are optimized by means of particle swarm optimization. The proposed model is demonstrated with the aid of two representative numerical examples, such as mathematical synthetic data set and Mackey-Glass time series data set and also we discuss the approximation as well as generalization abilities for the model.

Effective Design of Pixel-type Frequency Selective Surfaces using an Improved Binary Particle Swarm Optimization Algorithm (개선된 이진 입자 군집 최적화 알고리즘을 적용한 픽셀 형태 주파수 선택적 표면의 효율적인 설계방안 연구)

  • Yang, Dae-Do;Park, Chan-Sun;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.4
    • /
    • pp.261-269
    • /
    • 2019
  • This study investigates a method of designing pixel-type frequency selective surfaces(FSS) with flexibility while considering factors, such as polarization and incident angle. Among the various methods used to solve the discrete space problem when designing a pixel-type FSS, the binary particle swarm optimization(BPSO) algorithm is one of the most applicable techniques to determine the periodic structure pattern of an FSS. Therefore, a method of efficiently designing FSS with roll-off band pass characteristics using an improved BPSO algorithm is proposed. To solve the convergence problem in the fitness function design to induce particles in the desired solution, FSS with desired roll-off wave characteristics can be easily obtained by applying a fitness function using "slope" as an input parameter.

Cooperative Particle Swarm Optimization-based Model Predictive Control for Multi-Robot Formation (군집 로봇 편대 제어를 위한 협력 입자 군집 최적화 알고리즘 기반 모델 예측 제어 기법)

  • Lee, Seung-Mok;Kim, Hanguen;Myung, Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.5
    • /
    • pp.429-434
    • /
    • 2013
  • This paper proposes a CPSO (Cooperative Particle Swarm Optimization)-based MPC (Model Predictive Control) scheme to deal with formation control problem of multiple nonholonomic mobile robots. In a distributed MPC framework, each robot needs to optimize control input sequence over a finite prediction horizon considering control inputs of the other robots where their cost functions are coupled by the state variables of the neighboring robots. In order to optimize the control input sequence, a CPSO algorithm is adopted and modified to fit into the formation control problem. Experiments are performed on a group of nonholonomic mobile robots to demonstrate the effectiveness of the proposed CPSO-based MPC for multi-robot formation.

Capacity determination for a rainfall harvesting unit using an optimization method (최적화 기법을 이용한 빗물이용시설의 저류 용량 결정)

  • Jin, Youngkyu;Kang, Taeuk;Lee, Sangho;Jeong, Taekmun
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.9
    • /
    • pp.681-690
    • /
    • 2020
  • Generally, the design capacity of the rainwater harvesting unit is determined by trial and error method that is repeatedly calculating various analysis scenarios with capacity, reliability, and rainwater utilization ratio, etc. This method not only takes a lot of time to analyze but also involves a lot of calculations, so analysis errors may occur. In order to solve the problem, this study suggested a way to directly determine the minimum capacity to meet arbitrary target reliabilities using the global optimization method. The method was implemented by simulation model with particle swarm optimization (PSO) algorithms using Python language. The pyswarm that is provided as an open-source of python was used as optimization method, that can explore global optimum, and consider constraints. In this study, the developed program was applied to the design data for the rainwater harvesting constructed in Cheongna district 1 in Incheon to verify the efficiency, stability, and accuracy of the analysis. The method of determining the capacity of the rainwater harvesting presented in this study is considered to be of practical value because it can improve the current level of analytical technology.

RBFNN Based Decentralized Adaptive Tracking Control Using PSO for an Uncertain Electrically Driven Robot System with Input Saturation (입력 포화를 가지는 불확실한 전기 구동 로봇 시스템에 대해 PSO를 이용한 RBFNN 기반 분산 적응 추종 제어)

  • Shin, Jin-Ho;Han, Dae-Hyun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.2
    • /
    • pp.77-88
    • /
    • 2018
  • This paper proposes a RBFNN(Radial Basis Function Neural Network) based decentralized adaptive tracking control scheme using PSO(Particle Swarm Optimization) for an uncertain electrically driven robot system with input saturation. Practically, the magnitudes of input voltage and current signals are limited due to the saturation of actuators in robot systems. The proposed controller overcomes this input saturation and does not require any robot link and actuator model parameters. The fitness function used in the presented PSO scheme is expressed as a multi-objective function including the magnitudes of voltages and currents as well as the tracking errors. Using a PSO scheme, the control gains and the number of the RBFs are tuned automatically and thus the performance of the control system is improved. The stability of the total control system is guaranteed by the Lyapunov stability analysis. The validity and robustness of the proposed control scheme are verified through simulation results.

Design of a Multilayer Radar Absorbing Structure Based on Particle Swarm Optimization Algorithm (입자 군집 최적화(PSO) 알고리즘 기반 다층 레이더 흡수 구조체 설계)

  • Choi, Young-Doo;Han, Min-Seok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.5
    • /
    • pp.367-379
    • /
    • 2022
  • In this paper, a multilayer radar absorbing structure was designed using the Particle Swarm Optimization (PSO) algorithm, and the characteristics of the multilayer radar absorbing structure were analyzed. It was shown that design values can be derived quickly and accurately by applying PSO to the design of a multilayer radar absorbing structure, and it is also shown that the optimal multilayer radar absorbing structure can be designed especially for an oblique incident. In addition, it was shown that the optimal value that meets the performance requirements can be determined even in a combination of various design parameters. It is presented through a comprehensive flowchart including the equations and detailed descriptions of all variables for each step. From the results of this paper, it is possible to omit complex and many calculations for designing a multilayer radar absorbing structure, and it is possible to use various composite materials. It can be utilized in the design and development of multilayer radar absorbing structures.

A Design and Analysis of Improved Firefly Algorithm Based on the Heuristic (휴리스틱에 의하여 개선된 반딧불이 알고리즘의 설계와 분석)

  • Rhee, Hyun-Sook;Lee, Jung-Woo;Oh, Kyung-Whan
    • The KIPS Transactions:PartB
    • /
    • v.18B no.1
    • /
    • pp.39-44
    • /
    • 2011
  • In this paper, we propose a method to improve the Firefly Algorithm(FA) introduced by Xin-She Yang, recently. We design and analyze the improved firefly algorithm based on the heuristic. We compare the FA with the Particle Swarm Optimization (PSO) which the problem domain is similar with the FA in terms of accuracy, algorithm convergence time, the motion of each particle. The compare experiments show that the accuracy of FA is not worse than PSO's, but the convergence time of FA is slower than PSO's. In this paper, we consider intuitive reasons of slow convergence time problem of FA, and propose the improved version of FA using a partial mutation heuristic based on the consideration. The experiments using benchmark functions show the accuracy and convergence time of the improved FA are better than them of PSO and original FA.

Structural Design of Optimized Fuzzy Inference System Based on Particle Swarm Optimization (입자군집 최적화에 기초한 최적 퍼지추론 시스템의 구조설계)

  • Kim, Wook-Dong;Lee, Dong-Jin;Oh, Sung-Kwun
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.384-386
    • /
    • 2009
  • This paper introduces an effectively optimized Fuzzy model identification by means of complex and nonlinear system applying PSO algorithm. In other words, we use PSO(Particle Swarm Optimization) for identification of Fuzzy model structure and parameter. PSO is an algorithm that follows a collaborative population-based search model. Each particle of swarm flies around in a multidimensional search space looking for the optimal solution. Then, Particles adjust their position according to their own and their neighboring-particles experience. This paper identifies the premise part parameters and the consequence structures that have many effects on Fuzzy system based on PSO. In the premise parts of the rules, we use triangular. Finally we evaluate the Fuzzy model that is widely used in the standard model of gas data and sew data.

  • PDF