• Title/Summary/Keyword: 입자군집최적화

Search Result 89, Processing Time 0.025 seconds

Effective Design of Pixel-type Frequency Selective Surfaces using an Improved Binary Particle Swarm Optimization Algorithm (개선된 이진 입자 군집 최적화 알고리즘을 적용한 픽셀 형태 주파수 선택적 표면의 효율적인 설계방안 연구)

  • Yang, Dae-Do;Park, Chan-Sun;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.4
    • /
    • pp.261-269
    • /
    • 2019
  • This study investigates a method of designing pixel-type frequency selective surfaces(FSS) with flexibility while considering factors, such as polarization and incident angle. Among the various methods used to solve the discrete space problem when designing a pixel-type FSS, the binary particle swarm optimization(BPSO) algorithm is one of the most applicable techniques to determine the periodic structure pattern of an FSS. Therefore, a method of efficiently designing FSS with roll-off band pass characteristics using an improved BPSO algorithm is proposed. To solve the convergence problem in the fitness function design to induce particles in the desired solution, FSS with desired roll-off wave characteristics can be easily obtained by applying a fitness function using "slope" as an input parameter.

Efficient Uncertainty Analysis of TOPMODEL Using Particle Swarm Optimization (입자군집최적화 알고리듬을 이용한 효율적인 TOPMODEL의 불확실도 분석)

  • Cho, Huidae;Kim, Dongkyun;Lee, Kanghee
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.3
    • /
    • pp.285-295
    • /
    • 2014
  • We applied the ISPSO-GLUE method, which integrates the Isolated-Speciation-based Particle Swarm Optimization (ISPSO) with the Generalized Likelihood Uncertainty Estimation (GLUE) method, to the uncertainty analysis of the Topography Model (TOPMODEL) and compared its performance with that of the GLUE method. When we performed the same number of model runs for the both methods, we were able to identify the point where the performance of ISPSO-GLUE exceeded that of GLUE, after which ISPSOGLUE kept improving its performance steadily while GLUE did not. When we compared the 95% uncertainty bounds of the two methods, their general shapes and trends were very similar, but those of ISPSO-GLUE enclosed about 5.4 times more observed values than those of GLUE did. What it means is that ISPSOGLUE requires much less number of parameter samples to generate better performing uncertainty bounds. When compared to ISPSO-GLUE, GLUE overestimated uncertainty in the recession limb following the maximum peak streamflow. For this recession period, GLUE requires to find more behavioral models to reduce the uncertainty. ISPSO-GLUE can be a promising alternative to GLUE because the uncertainty bounds of the method were quantitatively superior to those of GLUE and, especially, computationally expensive hydrologic models are expected to greatly take advantage of the feature.

Cooperative Particle Swarm Optimization-based Model Predictive Control for Multi-Robot Formation (군집 로봇 편대 제어를 위한 협력 입자 군집 최적화 알고리즘 기반 모델 예측 제어 기법)

  • Lee, Seung-Mok;Kim, Hanguen;Myung, Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.5
    • /
    • pp.429-434
    • /
    • 2013
  • This paper proposes a CPSO (Cooperative Particle Swarm Optimization)-based MPC (Model Predictive Control) scheme to deal with formation control problem of multiple nonholonomic mobile robots. In a distributed MPC framework, each robot needs to optimize control input sequence over a finite prediction horizon considering control inputs of the other robots where their cost functions are coupled by the state variables of the neighboring robots. In order to optimize the control input sequence, a CPSO algorithm is adopted and modified to fit into the formation control problem. Experiments are performed on a group of nonholonomic mobile robots to demonstrate the effectiveness of the proposed CPSO-based MPC for multi-robot formation.

Capacity determination for a rainfall harvesting unit using an optimization method (최적화 기법을 이용한 빗물이용시설의 저류 용량 결정)

  • Jin, Youngkyu;Kang, Taeuk;Lee, Sangho;Jeong, Taekmun
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.9
    • /
    • pp.681-690
    • /
    • 2020
  • Generally, the design capacity of the rainwater harvesting unit is determined by trial and error method that is repeatedly calculating various analysis scenarios with capacity, reliability, and rainwater utilization ratio, etc. This method not only takes a lot of time to analyze but also involves a lot of calculations, so analysis errors may occur. In order to solve the problem, this study suggested a way to directly determine the minimum capacity to meet arbitrary target reliabilities using the global optimization method. The method was implemented by simulation model with particle swarm optimization (PSO) algorithms using Python language. The pyswarm that is provided as an open-source of python was used as optimization method, that can explore global optimum, and consider constraints. In this study, the developed program was applied to the design data for the rainwater harvesting constructed in Cheongna district 1 in Incheon to verify the efficiency, stability, and accuracy of the analysis. The method of determining the capacity of the rainwater harvesting presented in this study is considered to be of practical value because it can improve the current level of analytical technology.

RBFNN Based Decentralized Adaptive Tracking Control Using PSO for an Uncertain Electrically Driven Robot System with Input Saturation (입력 포화를 가지는 불확실한 전기 구동 로봇 시스템에 대해 PSO를 이용한 RBFNN 기반 분산 적응 추종 제어)

  • Shin, Jin-Ho;Han, Dae-Hyun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.2
    • /
    • pp.77-88
    • /
    • 2018
  • This paper proposes a RBFNN(Radial Basis Function Neural Network) based decentralized adaptive tracking control scheme using PSO(Particle Swarm Optimization) for an uncertain electrically driven robot system with input saturation. Practically, the magnitudes of input voltage and current signals are limited due to the saturation of actuators in robot systems. The proposed controller overcomes this input saturation and does not require any robot link and actuator model parameters. The fitness function used in the presented PSO scheme is expressed as a multi-objective function including the magnitudes of voltages and currents as well as the tracking errors. Using a PSO scheme, the control gains and the number of the RBFs are tuned automatically and thus the performance of the control system is improved. The stability of the total control system is guaranteed by the Lyapunov stability analysis. The validity and robustness of the proposed control scheme are verified through simulation results.

Design of Nonlinear Model Using Type-2 Fuzzy Logic System by Means of C-Means Clustering (C-Means 클러스터링 기반의 Type-2 퍼지 논리 시스템을 이용한 비선형 모델 설계)

  • Baek, Jin-Yeol;Lee, Young-Il;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.842-848
    • /
    • 2008
  • This paper deal with uncertainty problem by using Type-2 fuzzy logic set for nonlinear system modeling. We design Type-2 fuzzy logic system in which the antecedent and the consequent part of rules are given as Type-2 fuzzy set and also analyze the performance of the ensuing nonlinear model with uncertainty. Here, the apexes of the antecedent membership functions of rules are decided by C-means clustering algorithm and the apexes of the consequent membership functions of rules are learned by using back-propagation based on gradient decent method. Also, the parameters related to the fuzzy model are optimized by means of particle swarm optimization. The proposed model is demonstrated with the aid of two representative numerical examples, such as mathematical synthetic data set and Mackey-Glass time series data set and also we discuss the approximation as well as generalization abilities for the model.

Design of a Multilayer Radar Absorbing Structure Based on Particle Swarm Optimization Algorithm (입자 군집 최적화(PSO) 알고리즘 기반 다층 레이더 흡수 구조체 설계)

  • Choi, Young-Doo;Han, Min-Seok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.5
    • /
    • pp.367-379
    • /
    • 2022
  • In this paper, a multilayer radar absorbing structure was designed using the Particle Swarm Optimization (PSO) algorithm, and the characteristics of the multilayer radar absorbing structure were analyzed. It was shown that design values can be derived quickly and accurately by applying PSO to the design of a multilayer radar absorbing structure, and it is also shown that the optimal multilayer radar absorbing structure can be designed especially for an oblique incident. In addition, it was shown that the optimal value that meets the performance requirements can be determined even in a combination of various design parameters. It is presented through a comprehensive flowchart including the equations and detailed descriptions of all variables for each step. From the results of this paper, it is possible to omit complex and many calculations for designing a multilayer radar absorbing structure, and it is possible to use various composite materials. It can be utilized in the design and development of multilayer radar absorbing structures.

Research on Multi-Vehicle and Multi-Task Route Planning for Autonomous Delivery Robots in Parks (공원 내 자율 배달 로봇을 위한 다중 차량 및 다중 작업 경로 계획 연구)

  • Lu Ke;Byung-Won Min
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.5
    • /
    • pp.27-37
    • /
    • 2024
  • In the context of multi-vehicle and multi-task logistics distribution within a park, traditional algorithms are often hindered by high computational complexity and slow convergence rates. Particle Swarm Optimization (PSO) has gained popularity in path planning for autonomous delivery vehicles due to its straightforward algorithmic principles, broad applicability, and comprehensive search capabilities. However, the conventional PSO is susceptible to premature convergence, leading to local optima. To address this, this study incorporates the Tent map into the PSO to enhance the algorithm's global search ability and prevent premature convergence. Benchmark function tests demonstrate that the improved Particle Swarm Optimization algorithm (TPSO), as proposed in this study, exhibits faster convergence and greater accuracy.In the instance verification section, X Park was selected as an example to construct a multi-vehicle and multi-task model for the logistics distribution within the park. The TPSO algorithm proposed in this paper was used to solve the model, and finally, the superiority of the TPSO algorithm was verified through comparative simulation.

Parallelized Particle Swarm Optimization with GPU for Real-Time Ballistic Target Tracking (실시간 탄도 궤적 목표물 추적을 위한 GPU 기반 병렬적 입자군집최적화 기법)

  • Yunho, Han;Heoncheol, Lee;Hyeokhoon, Gwon;Wonseok, Choi;Bora, Jeong
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.6
    • /
    • pp.355-365
    • /
    • 2022
  • This paper addresses the problem of real-time tracking a high-speed ballistic target. Particle filters can be considered to overcome the nonlinearity in motion and measurement models in the ballistic target. However, it is difficult to apply particle filters to real-time systems because particle filters generally require much computation time. This paper proposes an accelerated particle filter using graphics processing unit (GPU) for real-time ballistic target tracking. The real-time performance of the proposed method was tested and analyzed on a widely-used embedded system. The comparison results with the conventional particle filter on CPU (central processing unit) showed that the proposed method improved the real-time performance by reducing computation time significantly.

Structural Design of Radial Basis Function-based Polynomial Neural Networks by Using Multiobjective Particle Swarm Optimization (다중목적 입자군집 최적화 알고리즘을 이용한 방사형 기저 함수 기반 다항식 신경회로망 구조 설계)

  • Kim, Wook-Dong;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1966-1967
    • /
    • 2011
  • 본 연구에서는 방사형 기저 함수를 이용한 다항식 신경회로망(Polynomial Neural Network) 분류기를 제안한다. 제안된 모델은 PNN을 기본 구조로 하여 1층의 다항식 노드 대신에 다중 출력 형태의 방사형 기저 함수를 사용하여 각 노드가 방사형 기저 함수 신경회로망(RBFNN)을 형성한다. RBFNN의 은닉층에는 fuzzy 클러스터링을 사용하여 입력 데이터의 특성을 고려한 적합도를 사용하였다. 제안된 분류기는 입력변수의 수와 다항식 차수가 모델의 성능을 결정함으로 최적화가 필요하며 본 논문에서는 Multiobjective Particle Swarm Optimization(MoPSO)을 사용하여 모델의 성능뿐만 아니라 모델의 복잡성 및 해석력을 고려하였다. 패턴 분류기로써의 제안된 모델을 평가하기 위해 Iris 데이터를 이용하였다.

  • PDF