Browse > Article
http://dx.doi.org/10.3741/JKWRA.2014.47.3.285

Efficient Uncertainty Analysis of TOPMODEL Using Particle Swarm Optimization  

Cho, Huidae (Staff Water Resources Engineer, Dewberry)
Kim, Dongkyun (Department of Civil Engineering, Hongik University)
Lee, Kanghee (Department of Civil Engineering, Hongik University)
Publication Information
Journal of Korea Water Resources Association / v.47, no.3, 2014 , pp. 285-295 More about this Journal
Abstract
We applied the ISPSO-GLUE method, which integrates the Isolated-Speciation-based Particle Swarm Optimization (ISPSO) with the Generalized Likelihood Uncertainty Estimation (GLUE) method, to the uncertainty analysis of the Topography Model (TOPMODEL) and compared its performance with that of the GLUE method. When we performed the same number of model runs for the both methods, we were able to identify the point where the performance of ISPSO-GLUE exceeded that of GLUE, after which ISPSOGLUE kept improving its performance steadily while GLUE did not. When we compared the 95% uncertainty bounds of the two methods, their general shapes and trends were very similar, but those of ISPSO-GLUE enclosed about 5.4 times more observed values than those of GLUE did. What it means is that ISPSOGLUE requires much less number of parameter samples to generate better performing uncertainty bounds. When compared to ISPSO-GLUE, GLUE overestimated uncertainty in the recession limb following the maximum peak streamflow. For this recession period, GLUE requires to find more behavioral models to reduce the uncertainty. ISPSO-GLUE can be a promising alternative to GLUE because the uncertainty bounds of the method were quantitatively superior to those of GLUE and, especially, computationally expensive hydrologic models are expected to greatly take advantage of the feature.
Keywords
hydrology; optimization; uncertainty analysis; TOPMODEL; particle swarm optimization; GLUE;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Zheng, Y., and Keller, A.A. (2007). Uncertainty Assessment in Watershed-Scale Water Quality Modeling and Management: 1. Framework and Application of Generalized Likelihood Uncertainty Estimation (GLUE) Approach. Water Resources Research 43, W08407.
2 Beven, K.J., Quinn, P., Romanowicz, R., Freer, J., Fisher, J., and Lanb, R. (1995). TOPMODEL and GRIDATB: A User's Guide to the Distribution Versions, Lancaster University, p. 31.
3 Arnold, J.G., Srinivasan, R., Muttiah, R.S., and Williams, J.R. (1998). "Large Area Hydrologic Modelling and Assessment, Part I: Model Development." Journal of the American Water Resources Association, Vol. 34, No. 1, pp. 73-89.   DOI   ScienceOn
4 Beven, K.J., and Kirkby, M.J. (1979). "A Physically Based, Variable Contributing Area Model of Basin Hydrology." Hydrological Sciences Bulletin, Vol. 24, pp. 43-69.   DOI   ScienceOn
5 Beven, K., and Binley, A. (1992). "The Future of Distributed Models: Model Calibration and Uncertainty Prediction." Hydrological Processes, Vol. 6, pp. 279-298.   DOI
6 Beven, K., Smith, P., and Freer, J. (2008). "So Just Why Would A Modeller Choose To Be Incoherent?" Journal of Hydrology, Vol. 354, pp. 15-32.   DOI   ScienceOn
7 Blasone, R.-S., Vrugt, J.A., Madsen, H., Rosbjerg, D., Robinson, B.A., and Zyvoloski, G.A. (2008). Generalized Likelihood Uncertainty Estimation (GLUE) Using Adaptive Markov Chain Monte Carlo Sampling. Advances in Water Resources, Vol. 31, pp. 630-648.   DOI   ScienceOn
8 Cho, H. (2000). Development of a GIS Hydrologic Modeling System by Using the Programming Interface of GRASS GIS, Master's Thesis. Department of Civil Engineering, Kyungpook National University.
9 Cho, H., Lee, D., Lee, K., Lee, J., and Kim, D. (2013). "Development and Application of a Storm Identification Algorithm that Conceptualizes Storms by Elliptical Shape." Journal of the Korean Society of Hazard Mitigation, Vol. 13, No. 5, pp. 325-335.   과학기술학회마을   DOI   ScienceOn
10 Cho, H., and Olivera, F. (2009). "Effect of the Spatial Variability of Land Use, Soil Type, and Precipitation on Streamflows in Small Watersheds." Journal of the American Water Resources Association, Vol. 45, No. 3, pp. 673-686.   DOI   ScienceOn
11 Evans, M. (1991). Adaptive Importance Sampling and Chaining." Contemporary Mathematics, Vol. 115, pp. 137-143.   DOI
12 Cho, H., and Olivera, F. (2014). "Application of Multimodal Optimization for Uncertainty Estimation of Computationally Expensive Hydrologic Models." Journal of Water Resources Planning and Management, Vol. 140, No. 3, pp. 313-321.   DOI   ScienceOn
13 Conrad, O. (2003). System for Automated Geoscientific Analyses Module Library: sim_hydrology, topmodel.cpp. http://sourceforge.net/apps/trac/saga-gis/browser/trunk/saga-gis/src/modules_simulation/hydrology/sim_hydrology/topmodel.cpp, accessed in October 2013.
14 Draper, N.R., and Box, G.E. (1987). Empirical Model-Building and Response Surfaces. John Wiley and Sons Inc.
15 GRASS Development Team. (2012). Geographic Resources Analysis Support System(GRASS GIS) Software. Open Source Geospatial Foundation Project. http://grass.osgeo.org.
16 McKay, M.D., Beckman, R.J., and Conover, W.J. (1979). "A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code." Technometrics Vol. 21, No. 2, pp. 239-245.
17 Hornik, K. (2008). Changes on CRAN. R News 8(2), 60-68. http://www.r-project.org/doc/Rnews/Rnews_2008-2.pdf, accessed in October 2013.
18 Kim, D., Olivera, F., Cho, H., and Socolofsky, S. (2013). "Regionalization of the Modified Bartlett-Lewis Rectangular Pulse Stochastic Rainfall Model." Terrestrial, Atmospheric and Oceanic Sciences, Vol. 24, No 3, pp. 421-436.   DOI
19 Mantovan, P., and Todini, E. (2006). Hydrological Forecasting Uncertainty Assessment: Incoherence of the GLUE Methodology. Journal of Hydrology, Vol. 330, pp. 368-381.   DOI   ScienceOn
20 Muleta, M.K., and Nicklow, J.W. (2005). "Sensitivity and Uncertainty Analysis Coupled with Automatic Calibration for a Distributed Watershed Model." Journal of Hydrology Vol. 306, pp. 127-145.   DOI   ScienceOn
21 Nash, J.E., and Sutcliffe, J.V. (1970). River Flow Forecasting Through Conceptual Models, Part I-A Discussion of Principles. Journal of Hydrology, Vol. 10, pp. 282-290.   DOI   ScienceOn
22 NOAA-CPC. (2013). National Oceanic & Atmospheric Administration-Climate Prediction Center. Joint Agricultural Weather Facility, U.S. Evaporation Data. http://www.cpc.ncep.noaa.gov/products/GIS/GIS_DATA/JAWF, accessed in September 2013.
23 NOAA-NCDC. (2013). National Oceanic & Atmospheric Administration-National Climatic Data Center. Surface Data, Daily US. http://www.ncdc.noaa.gov, accessed in September 2013.
24 Olaya, V. (2004). A Gentle Introduction to SAGA GIS. http://downloads.sourceforge.net/saga-gis/SagaManual.pdf, Accessed on September 13, 2013.
25 R Development Core Team. (2006). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0.
26 Thiessen, A.H., and Alter, J.C. (1911). Climatological Data for July, 1911: District No. 10, Great Basin. Monthly Weather Review July 1911:1082-1089.
27 USGS. (2013a). U.S. Geological Survey. National Elevation Dataset (NED). http://ned.usgs.gov, accessed in September 2013
28 USGS. (2013b). U.S. Geological Survey. Surface-Water Daily Data for the Nation. http://waterdata.usgs.gov/nwis, accessed in September 2013.
29 Cho, H., Kim, D., Olivera, F., and Guikema, S.D. (2011). "Enhanced Speciation in Particle Swarm Optimization for Multi-Modal Problems." European Journal of Operational Research, Vol. 213, No. 1, pp. 15-23.   DOI   ScienceOn
30 Vrugt, J.A., ter Braak, C.J.F., Diks, C.G.H., Robinson, B.A., Hyman, J.M., and Higdon, D. (2009). "Accelerating Markov Chain Monte Carlo Simulation by Differential Evolution with Self-Adaptive Randomized Subspace Sampling." International Journal of Nonlinear Sciences & Numerical Simulation, Vol. 10, No. 3, pp. 271-288.