• Title/Summary/Keyword: 입모양인식

Search Result 10, Processing Time 0.022 seconds

A study on the lip shape recognition algorithm using 3-D Model (3차원 모델을 이용한 입모양 인식 알고리즘에 관한 연구)

  • 남기환;배철수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.5
    • /
    • pp.783-788
    • /
    • 2002
  • Recently, research and developmental direction of communication system is concurrent adopting voice data and face image in speaking to provide more higher recognition rate then in the case of only voice data. Therefore, we present a method of lipreading in speech image sequence by using the 3-D facial shape model. The method use a feature information of the face image such as the opening-level of lip, the movement of jaw, and the projection height of lip. At first, we adjust the 3-D face model to speeching face Image sequence. Then, to get a feature information we compute variance quantity from adjusted 3-D shape model of image sequence and use the variance quality of the adjusted 3-D model as recognition parameters. We use the intensity inclination values which obtaining from the variance in 3-D feature points as the separation of recognition units from the sequential image. After then, we use discrete HMM algorithm at recognition process, depending on multiple observation sequence which considers the variance of 3-D feature point fully. As a result of recognition experiment with the 8 Korean vowels and 2 Korean consonants, we have about 80% of recognition rate for the plosives md vowels.

A Study on the Visual Speech Recognition based on the Variations of Lip Shapes (입모양 변화에 의한 영상음성 인식에 관한 연구)

  • 이철우;계영철
    • Proceedings of the KAIS Fall Conference
    • /
    • 2001.05a
    • /
    • pp.188-191
    • /
    • 2001
  • 본 논문에서는 화자의 입모양의 변화를 분석하여 발음된 음성을 인식하는 방법에 관하여 연구하였다. 입모양 변화를 나타내는 특징벡터의 서로 다른 선택이 인식성능에 미치는 영향을 비교 분석하였다. 특징벡터로서는 ASM(Active Shape Model) 파라메터와 Acticulatory 파라메터를 특별히 선택하여 인식성능을 비교하였다. 모의실험 결과, Articulatory 파라메터를 사용하는 것이 인식성능도 더 우수하고 계산량도 더 적음을 확인할 수 있었다.

Real-Time Lip Reading System Implementation Based on Deep Learning (딥러닝 기반의 실시간 입모양 인식 시스템 구현)

  • Cho, Dong-Hun;Kim, Won-Jun
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.267-269
    • /
    • 2020
  • 입모양 인식(Lip Reading) 기술은 입술 움직임을 통해 발화를 분석하는 기술이다. 본 논문에서는 일상적으로 사용하는 10개의 상용구에 대해서 발화자의 안면 움직임 분석을 통해 실시간으로 분류하는 연구를 진행하였다. 시간상의 연속된 순서를 가진 영상 데이터의 특징을 고려하여 3차원 합성곱 신경망 (Convolutional Neural Network)을 사용하여 진행하였지만, 실시간 시스템 구현을 위해 연산량 감소가 필요했다. 이를 해결하기 위해 차 영상을 이용한 2차원 합성곱 신경망과 LSTM 순환 신경망 (Long Short-Term Memory) 결합 모델을 설계하였고, 해당 모델을 이용하여 실시간 시스템 구현에 성공하였다.

  • PDF

A study on the lip shape recognition algorithm using 3-D Model (3차원 모델을 이용한 입모양 인식 알고리즘에 관한 연구)

  • 배철수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.1
    • /
    • pp.59-68
    • /
    • 1999
  • Recently, research and developmental direction of communication system is concurrent adopting voice data and face image in speaking to provide more higher recognition rate then in the case of only voice data. Therefore, we present a method of lipreading in speech image sequence by using the 3-D facial shape model. The method use a feature information of the face image such as the opening-level of lip, the movement of jaw, and the projection height of lip. At first, we adjust the 3-D face model to speeching face image sequence. Then, to get a feature information we compute variance quantity from adjusted 3-D shape model of image sequence and use the variance quality of the adjusted 3-D model as recognition parameters. We use the intensity inclination values which obtaining from the variance in 3-D feature points as the separation of recognition units from the sequential image. After then, we use discrete HMM algorithm at recognition process, depending on multiple observation sequence which considers the variance of 3-D feature point fully. As a result of recognition experiment with the 8 Korean vowels and 2 Korean consonants, we have about 80% of recognition rate for the plosives and vowels. We propose that usability with visual distinguishing factor that using feature vector because as a result of recognition experiment for recognition parameter with the 10 korean vowels, obtaining high recognition rate.

  • PDF

Lip Reading Method Using CNN for Utterance Period Detection (발화구간 검출을 위해 학습된 CNN 기반 입 모양 인식 방법)

  • Kim, Yong-Ki;Lim, Jong Gwan;Kim, Mi-Hye
    • Journal of Digital Convergence
    • /
    • v.14 no.8
    • /
    • pp.233-243
    • /
    • 2016
  • Due to speech recognition problems in noisy environment, Audio Visual Speech Recognition (AVSR) system, which combines speech information and visual information, has been proposed since the mid-1990s,. and lip reading have played significant role in the AVSR System. This study aims to enhance recognition rate of utterance word using only lip shape detection for efficient AVSR system. After preprocessing for lip region detection, Convolution Neural Network (CNN) techniques are applied for utterance period detection and lip shape feature vector extraction, and Hidden Markov Models (HMMs) are then used for the recognition. As a result, the utterance period detection results show 91% of success rates, which are higher performance than general threshold methods. In the lip reading recognition, while user-dependent experiment records 88.5%, user-independent experiment shows 80.2% of recognition rates, which are improved results compared to the previous studies.

RoI Detection Method for Improving Lipreading Reading in Speech Recognition Systems (음성인식 시스템의 입 모양 인식개선을 위한 관심영역 추출 방법)

  • Jae-Hyeok Han;Mi-Hye Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.299-302
    • /
    • 2023
  • 입 모양 인식은 음성인식의 중요한 부분 중 하나로 이를 개선하기위한 다양한 연구가 진행되어 왔다. 기존의 연구에서는 주로 입술주변 영역을 관찰하고 인식하는데 초점을 두었으나, 본 논문은 음성인식 시스템에서 기존의 입술영역과 함께 입술, 턱, 뺨 등 다른 관심 영역을 고려하여 음성인식 시스템의 입모양 인식 성능을 비교하였다. 입 모양 인식의 관심 영역을 자동으로 검출하기 위해 객체 탐지 인공신경망을 사용하며, 이를 통해 다양한 관심영역을 실험하였다. 실험 결과 입술영역만 포함하는 ROI 에 대한 결과가 기존의 93.92%의 평균 인식률보다 높은 97.36%로 가장 높은 성능을 나타내었다.

Korean Lip Reading System Using MobileNet (MobileNet을 이용한 한국어 입모양 인식 시스템)

  • Won-Jong Lee;Joo-Ah Kim;Seo-Won Son;Dong Ho Kim
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.11a
    • /
    • pp.211-213
    • /
    • 2022
  • Lip Reading(독순술(讀脣術)) 이란 입술의 움직임을 보고 상대방이 무슨 말을 하는지 알아내는 기술이다. 본 논문에서는 MBC, SBS 뉴스 클로징 영상에서 쓰이는 문장 10개를 데이터로 사용하고 CNN(Convolutional Neural Network) 아키텍처 중 모바일 기기에서 동작을 목표로 한 MobileNet을 모델로 이용하여 발화자의 입모양을 통해 문장 인식 연구를 진행한 결과를 제시한다. 본 연구는 MobileNet과 LSTM을 활용하여 한국어 입모양을 인식하는데 목적이 있다. 본 연구에서는 뉴스 클로징 영상을 프레임 단위로 잘라 실험 문장 10개를 수집하여 데이터셋(Dataset)을 만들고 발화한 입력 영상으로부터 입술 인식과 검출을 한 후, 전처리 과정을 수행한다. 이후 MobileNet과 LSTM을 이용하여 뉴스 클로징 문장을 발화하는 입모양을 학습 시킨 후 정확도를 알아보는 실험을 진행하였다.

  • PDF

A Study on Combining Bimodal Sensors for Robust Speech Recognition (강인한 음성인식을 위한 이중모드 센서의 결합방식에 관한 연구)

  • 이철우;계영철;고인선
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.51-56
    • /
    • 2001
  • Recent researches have been focusing on jointly using lip motions and speech for reliable speech recognitions in noisy environments. To this end, this paper proposes the method of combining the visual speech recognizer and the conventional speech recognizer with each output properly weighted. In particular, we propose the method of autonomously determining the weights, depending on the amounts of noise in the speech. The correlations between adjacent speech samples and the residual errors of the LPC analysis are used for this determination. Simulation results show that the speech recognizer combined in this way provides the recognition performance of 83 % even in severely noisy environments.

  • PDF

3D Avatar Messenger Using Lip Shape Change for Face model (얼굴 입모양 변화를 이용한 3D Avatar Messenger)

  • Kim, Myoung-Su;Lee, Hyun-Cheol;Kim, Eun-Serk;Hur, Gi-Taek
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.05a
    • /
    • pp.225-228
    • /
    • 2005
  • 얼굴표정은 상대방에게 자신의 감정과 생각을 간접적으로 나타내는 중요한 의사소통의 표현이 되며 상대방에게 직접적인 표현방법의 수단이 되기도 한다. 이러한 표현 방법은 컴퓨터를 매개체로 하는 메신저간의 의사 전달에 있어서 얼굴표정을 사용함으로써 상대방의 감정을 문자로만 인식하는 것이 아니라 현재 상대방이 느끼는 내적인 감정까지 인식하여 대화할 수 있다. 본 논문은 3D 메시로 구성된 얼굴 모델을 이용하여 사용자가 입력한 한글 메시지의 한글 음절을 분석 추출 하고, 3D 얼굴 메시에 서 8개의 입술 제어점을 사용하여 입 모양의 변화를 보여주는 3D Avatar 아바타 메신저 시스템을 설계 및 구현 하였다.

  • PDF

A study on the lip shape recognition algorithm using 3-D Model (3차원 모델을 이용한 입모양 인식 알고리즘에 관한 연구)

  • 김동수;남기환;한준희;배철수;나상동
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1998.11a
    • /
    • pp.181-185
    • /
    • 1998
  • Recently, research and developmental direction of communication system is concurrent adopting voice data and face image in speaking to provide more higher recognition rate then in the case of only voice data. Therefore, we present a method of lipreading in speech image sequence by using the 3-D facial shape model. The method use a feature information of the face image such as the opening-level of lip, the movement of jaw, and the projection height of lip. At first, we adjust the 3-D face model to speeching face image sequence. Then, to get a feature information we compute variance quantity from adjusted 3-D shape model of image sequence and use the variance quality of the adjusted 3-D model as recognition parameters. We use the intensity inclination values which obtaining from the variance in 3-D feature points as the separation of recognition units from the sequential image. After then, we use discrete HMM algorithm at recognition process, depending on multiple observation sequence which considers the variance of 3-D feature point fully. As a result of recognition experiment with the 8 Korean vowels and 2 Korean consonants, we have about 80% of recognition rate for the plosives and vowels.

  • PDF