• Title/Summary/Keyword: 입도범위

Search Result 279, Processing Time 0.025 seconds

Effect of the Concentration of Suspension and Electrolyte on Zeta Potential (현탁액과 전해질의 농도가 제타전위에 미치는 영향)

  • 정상진;이승인;임형미
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.3
    • /
    • pp.293-300
    • /
    • 2003
  • It was investigated that effect of suspension and electrolyte concentrations on zeta potential of alumini suspension and Iso-Electric Point(I.E.P.). The alumina powders in 0.1∼l $\mu\textrm{m}$ particle size distribution, and the electrolyte NH$_4$NO$_3$ were used for preparing the suspension and electrophoresis method was used for measuring zeta potential in this work. As the concentration of suspension was increased, zeta potential and the I.E.P. were increased, respectively. On the other hand, as the electrolyte concentration was increased, the I.E.P. was decreased. As a result of this work, the best condition for measuring zeta potential was the 0.01 wt% and 10 mM of the suspension and the electrolyte concentration, respectively.

On techniques to handle depository layers in stream bed deformation modeling to consider mixed-size sediment transport (하상변동 모의에서 혼합 입경의 이송을 고려하기 위한 퇴적층 처리 기법에 관하여)

  • Dongwoon Kang;Kyungrock Paik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.220-220
    • /
    • 2023
  • 단순한 하상 변동 모형은 단일한 입경으로 구성된 하상재료를 다루는 데에 비해, 실제 하천에서는 다양한 입경의 유사가 섞여있다. 이러한 혼합 입경의 유사 이송을 모의하고자 하면 퇴적층의 생성과 소멸을 어떻게 모의하는지에 대한 기법이 중요해진다. 과거 연구에서는 유수의 영향을 받는 하상 두께가 입도 분포에 따라 다르다고 생각하였다. 반면, 다른 연구들에서는 두께가 합리적인 범위 내에 있다면 모의 결과에 영향을 미치지 않는다고 보고 상수로 설정하였다. 퇴적층의 개수를 어떻게 고려하느냐에 따라서도 모의기법이 나누어진다. 단일한 입경을 모의하는 경우 단일 퇴적층을 고려하지만, 혼합 입경을 고려하는 모형은 크게 2개의 퇴적층(active layer와 non-active layer)으로 나누는 종류와 3개 이상의 퇴적층을 고려하는 모형으로도 나눌 수 있다. 이 연구에서는 혼합 입경의 유사 이송을 모의할 수 있는 전 지형 발달 모형을 활용하여 퇴적층 처리 기법의 차이가 얼마나 모의 결과에 영향을 주는지를 파악하였다. 모의 결과는 기법이 바뀜에 따라 매우 민감하게 변하는 것을 확인할 수 있었다. 또한 이 연구에서는 3개 이상의 퇴적층을 고려함에 있어서 기존 퇴적층에 새로운 물질이 퇴적되었을 때 경계면에서 입자가 섞이는 mixed layer를 고려하는 개념을 제시한다.

  • PDF

Niche characterization of the tree species of genus Ophiura (Echinodermata, Ophiuroidea) in Korean waters, with special emphasis on the distribution of Ophiura sarsi vadicola Dja (한국산 빗살거미불가사리 3종의 서식처 지위- 특히 Ophiura sarsi vadicola Djakonov의 분포를 중심으로)

  • 홍재상;유재원
    • 한국해양학회지
    • /
    • v.30 no.5
    • /
    • pp.442-457
    • /
    • 1995
  • The relationships of environmental factors to the distribution patterns of the three species of ophiuroids, Ophiura kinbergi, O. sarsi and ). sarsi vadicola from Yellow Sea southeast seas and East Sea of Korea were studied to characterize their habitual niches. These three species chosen for study illustrated distinct niche and patterns according to their various preferences mainly for bottom water temperature, bottom water salinity and depth from seven environmental variables which were depth, bottom water temperature and salinity, density, bottom water oxygen content, grain size of the surface sediment, and sediment sorting coefficient. The results of habitat niche study mainly dealing with O. sarsi vadicola suggested that the optimum habitat rages were approximately 6$^{\circ}C$∼10$^{\circ}C$ in bottom temperature and 31%∼33.5% in bottom water salinity which also corresponded with the characteristic ranges of Yellow Sea Bottom Cold Water and higher probabilities of occurrence (more than 70%) were found in depth ranging from 100 to 200 m. In addition, the habitats of O. kinbergi and O. sarsi were compared with that of O. sarsi vadicola. Their ranges of habitat niches were found to have different niches in physical space of bottom water temperature, bottom water salinity and depth. Based on the distribution pattern of O. sarsi vadicola in the Yellow Sea, the ecological barrier which confined the distribution of benthic macro-invertebrates in southern Yellow Sea was determined to be the Yellow Sea Warm Current (approximately 34% < and 18$^{\circ}C$ in December) which occurs between 33$^{\circ}$ and 34$^{\circ}$N of southern Yellow Sea in winter time.

  • PDF

Physicochemical Characteristics of Tailings from the Various Types of Mineral Deposits (광상유형에 따른 광물찌꺼기의 물리화학적 특성)

  • Lee, Pyeong-Koo;Youm, Seung-Jun;Jung, Myung-Chae;Lee, Jin-Soo;Kwon, Hyun-Ho
    • Economic and Environmental Geology
    • /
    • v.43 no.3
    • /
    • pp.235-248
    • /
    • 2010
  • To construct the standard methods for evaluation of physicochemical characteristics of tailings in Korea, specific gravity, paste pH, grain size, mineral compositions and heavy metal concentrations of total 26 tailings from 21 metallic mines were analyzed. Specific gravity of tailings ranged from 2.61 to 4.31 (avg. 3.04), and sand and silt grain were dominant in the tailings. Ranges of paste pH were 2.1-9.5 in tailings (7.1-9.2 at magmatic, skarn and hydrothermal replacement deposits and 2.1-9.5 at hydrothermal vein deposits). Additionally, hydrothermal vein deposits could be reclassified into three categories: (1) paste pH>7.0, (2) 4.0

Classifications by Materials and Physical Characteristics for Neolithic Pottery from Jungsandong Site in Yeongjong Island, Korea (영종도 중산동 신석기시대 토기의 재료학적 분류와 물리적 특성)

  • Kim, Ran Hee;Lee, Chan Hee;Shin, Sook Chung
    • Korean Journal of Heritage: History & Science
    • /
    • v.50 no.4
    • /
    • pp.122-147
    • /
    • 2017
  • The Jungsandong sites are distributed across quartz and mica schist formations in Precambrian, and weathering layers include large amounts of non-plastic minerals such as mica, quartz, felspar, amphibole, chlorite and so on, which form the ground of the site. Neolithic pottery from Jungsandong exhibits various brown colors, and black core is developed along the inner part for some samples, and sharp comb-pattern and hand pressure marks can be observed. Their non-plastic particles have various composition, size distribution, sorting and roundness, so they are classified into four types by their characteristic mineral compositions. I-type (feldspar pottery) is including feldspar as the pain component or mica and quartz. II-type (mica pottery) is the combination of chloritized mica, talc, tremolite and diopside. III-type (talc pottery) is with a very small amount of quartz and mica. IV-type (asbestos pottery) is containing tremolite and a very small amount of talc. The inner and outer colors of Jungsandong pottery are somewhat heterogeneous. I-type pottery group shows differences in red and yellow degree, depending on the content of feldspar, and is similar to III-type pottery. II-type is similar to IV-type, because its red degree is somewhat high. The soil of the site is higher in red and yellow degree than pottery from it. The magnetic susceptibility has very wide range of 0.088 to 7.360(${\times}10^{-3}$ SI unit), but is differentiated according to minerals, main components in each type. The ranges of bulk density and absorption ratio of pottery seem to be 1.6 to 1.7 and 13.1 to 26.0%, respectively. Each type of pottery shows distinct section difference, as porosity and absorption ratio increase in the order as follows: I-type (organic matter fixed sample) < III-type and IV-type < I-type < II-type (including IV-type of IJP-15). The reason is that differences in physical property occur according to kind and size of non-plastic particles. Although Jungsandong pottery consists of mixtures of various materials, the site pottery has a geological condition on which all mineral composition of Jungsandong pottery can be provided. There, it is thought that raw materials can be supplied from weathered zone of quartz and mica schist, around the site. However, different constituent minerals, size and rock fragments are shown, suggesting the possibility that there can be more raw material pits. Thus, it is estimated that there may be difference in clay and weathering degree.

Effect of Fineness of Siliceous Materials on Correction of Soil Acidity under Submerged Condition (담수시(湛水時) 규산물질(珪酸物質)들의 입도별(粒度別) 토양산도교정능력(土壤酸度矯正能力))

  • Lee, Yun Hwan;Han, Ki Hak;Kim, Bok Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.5 no.2
    • /
    • pp.59-64
    • /
    • 1972
  • The liming effect of the four different siliceous materials with six grades of fineness were investigated in comparison with limestone under the submerged condition for three months, and the alkalinity extracted by 0.07N-EDTA and N-NaOAc solutions were determined to evaluate the neutralizing power of these materials. 1. Fused phosphate took 20 days with finer particles than 60 mesh (Tyler), 34 days with -40+48 mesh particles and 84 days with -20+25 mesh particles to reach the pH 5.5 from pH 4.0 of initial soil pH. These adjusted soil acidities were less 1.0-0.5 unit of pH compared with the pH of particles of limestone. 2. The basic reduction furnace slag increased the pH value to 5.5 in the finer particles than 100 mesh, but the other coarse particles appeared to have slow changes of the soil acidity to pH 4.5-4.7 for the three months. Wollastonite didn't affect the increase of soil pH in coarser particles than 25 mesh whereas other finer particles increased upto pH 4.5-5.0. Blast furnace slag is definitely slower through all sizes of particles. 3. In the relationship between the adjusted soil acidities and alkalinities dissolved in EDTA and NaOAc solution, NaOAc-alkalinity agreed quite closely to the activity of neutralizing value of silicates and limestone containing fineness of particles. The correlation coefficients between the amended soil acidities and NaOAc-alkalinities were stabilized with high significance at the 8 days after water logging and 16 days with the EDTA-alkalinities.

  • PDF

Trace Metals in Surface Sediments of Garolim Bay, Korea (가로림만 표층 퇴적물 내 미량금속 분포 특성)

  • PARK, KYOUNGKYU;CHOI, MANSIK;JOE, DONGJIN;JANG, DONGJUN;PARK, SOJUNG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.25 no.2
    • /
    • pp.9-25
    • /
    • 2020
  • In 2010 and 2015, total 77 surface sediment samples were collected to assess the anthropogenic effects of trace metals in surface sediments of Garolim Bay, and the physical characteristics (particle size and specific surface area) and geochemical components (major (Al, Ca, Fe, K, Ba) and trace metals (Mn, Cs, Cr, Co, Ni, Cu, Zn, Pb), organic carbon and calcium carbonate) were analyzed. Mean grain size of Garolim Bay surface sediments ranged from 0.51-5.58 Ø (mean 3.98 Ø) and increased from the inlet of bay to the inner bay, and from the waterway to the land. Most of the metal concentrations except for some elements showed the similar distribution to those of mean grain size and specific surface area. As the particle size decreased and the specific surface area increased, the metal concentration increased. In order to estimate the factors controlling the concentration of trace metals, factor analysis was performed, and three factors were extracted (92.7% of the total variation). Factor 1 accounted for 71.3% of the total variation, which was a grain size factor. Factor 2 accounted for 14.2% of the total variation, Factor 3 accounted for 7.2% of the total variance. Enrichment factor was calculated using the particle size corrected background concentration. Metals with a enrichment factor of 1.5 or higher and the number of samples were 4 for Cr (St. 1, 16, 27, 39) and 1 for Pb (St. 39), but there were little differences in the concentrations of 1M HCl leached metals for these metals. The percentage of 1M HCl leached fraction to total metal concentration decreased in the order of Pb~Co>Cu>Zn~Mn>Ni>Cr. Comparing this value with contaminated and clean sediments in other coastal areas, the percentages for each metal were similar regardless of the trace metal levels in all regions. This fact might be resulted from the reaction between the 1M HCl solution and the different sediment constituents, indicating that there is a limit to apply this percentage of leached metal to the estimation of the contamination extent.

Assessment of Particle Size Distribution and Pollution Impact of Heavy metalsin Road-deposited Sediments(RDS) from Shihwa Industrial Complex (시화산업단지 도로축적퇴적물의 입도분포 및 중금속 오염영향 평가)

  • Lee, Jihyun;Jeong, Hyeryeong;Ra, Kongtae;Choi, Jin Young
    • Journal of Environmental Impact Assessment
    • /
    • v.29 no.1
    • /
    • pp.8-25
    • /
    • 2020
  • Industrialization has increased the production of road-deposited sediments (RDS) and the level of heavy metals in those RDS, which can have a significant impact on the surrounding aquatic environments through non-point pollution. Although the relationship between contamination characteristics and particle size of RDS is important for pollution control, there is very little information on this. In this study, we investigated the characteristics of grain size distribution and heavy metal concentrations in the road-deposited sediments (RDS) collected from 25 stations in Shihwa Industrial Complex. The environmental impact of RDS with particle size is also studied. Igeo, the contamination assessment index of each metal concentration, represents the RDS from Shihwa Industrial Complex are very highly polluted with Cu, Zn, Pb and Sb, and the levels of those metals were 633~3605, 130~1483, 120~1997, 5.5~50 mg/kg, respectively. The concentrations of heavy metals in RDS increased with the decrease in particle size. The particle size fraction below 250 ㎛ was very dominant with mass and contamination loads, 78.6 and 70.4%, respectively. Particles less than 125 ㎛ of RDS were highly contaminated and toxic to benthic organisms in rivers. RDS particles larger than 250 ㎛ and smaller than 250 ㎛ were contaminated by the surrounding industrial facility and vehicle activities, respectively. As a result of this study, the clean-up of fine particles of RDS, smaller than 125-250 ㎛, is very important for the control and reduction of non-point pollution to nearby water in Shihwa Industrial Complex.

About Short-stacking Effect of Illite-smectite Mixed Layers (일라이트-스멕타이트 혼합층광물의 단범위적층효과에 대한 고찰)

  • Kang, Il-Mo
    • Economic and Environmental Geology
    • /
    • v.45 no.2
    • /
    • pp.71-78
    • /
    • 2012
  • Illite-smectite mixed layers (I-S) occurring authigenically in diagenetic and hydrothermal environments reacts toward more illite-rich phases as temperature and potassium ion concentration increase. For that reason, I-S is often used as geothermometry and/or geochronometry at the field of hydrocarbons or ore minerals exploration. Generally, I-S shows X-ray powder diffraction (XRD) patterns of ultra-thin lamellar structures, which consist of restricted numbers of sillicate layers (normally, 5 ~ 15 layers) stacked in parallel to a-b planes. This ultra-thinness is known to decrease I-S expandability (%S) rather than theoretically expected one (short-stacking effect). We attempt here to quantify the short stacking effect of I-S using the difference of two types of expandability: one type is a maximum expandability ($%S_{Max}$) of infinite stacks of fundamental particles (physically inseparable smallest units), and the other type is an expandability of finite particle stacks normally measured using X-ray powder diffraction (XRD) ($%S_{XRD}$). Eleven I-S samples from the Geumseongsan volcanic complex, Uiseong, Gyeongbuk, have been analyzed for measuring $%S_{XRD}$ and average coherent scattering thickness (CST) after size separation under 1 ${\mu}m$. Average fundamental particle thickness ($N_f$) and $%S_{Max}$ have been determined from $%S_{XRD}$ and CST using inter-parameter relationships of I-S layer structures. The discrepancy between $%S_{Max}$ and $%S_{XRD}$ (${\Delta}%S$) suggests that the maximum short-stacking effect happens approximately at 20 $%S_{XRD}$, of which point represents I-S layer structures consisting of ca. average 3-layered fundamental particles ($N_f{\approx}3$). As a result of inferring the $%S_{XRD}$ range of each Reichweite using the $%S_{XRD}$ vs. $N_f$ diagram of Kang et al. (2002), we can confirms that the fundamental particle thickness is a determinant factor for I-S Reichweite, and also that the short-stacking effect shifts the $%S_{XRD}$ range of each Reichweite toward smaller $%S_{XRD}$ values than those that can be theoretically prospected using junction probability.

Estimating Critical Stream Power by the Distribution of Gravel-bed Materials in the Meandering River (만곡하천의 자갈하상재료 분포에 따른 한계수류력 평가)

  • Shin, Seung-Sook;Park, Sang-Deok;Lee, Seung-Kyu;Ji, Min-Gyu
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.2
    • /
    • pp.151-163
    • /
    • 2012
  • The distribution of gravel-bed materials in mountainous river is formed by the process of deposition and transportation of sediment responding to stream power of the latest flood that is over the certain scale. The particle size of bed material was surveyed in the longitudinal points of river and detail points of a specific meandering section and used to estimate the critical velocity and stream power. Yang's critical unit stream power and Bagnold's critical stream power for gravel-bed materials increased with the distance from downstream to upstream. Dimensionless shear stress based on the designed flood discharge in Shields diagram was evaluated that the gravel-bed materials in most survey points may be transported as form of bedload. The mean diameter in the meandering section was the biggest size in first water impingement point of inflow water from upstream and the second big size in second water impingement point by reflection flow. The mean diameters were relatively the small sizes in points right after water impingement. The range of mean critical velocity was 0.77~2.60 m/s and critical unit stream power was big greatly in first water impingement point. The distribution of critical stream power, range of 7~171 $W/m^2$, was shown that variation in longitudinal section was more obvious than that of cross section and estimated that critical stream power may be affected greatly in first and second water impingement point.