• Title/Summary/Keyword: 입구 유속

Search Result 152, Processing Time 0.02 seconds

The Effect of Residual Water on the Adsorption Process of Carbon Tetrachloride by Activated Carbon Pellet (활성탄에 의한 사염화탄소 흡착공정에서 잔존수분의 영향)

  • Jeong, Sung Jun;Lee, Dae Lo;Kim, Tae Young;Kim, Jin Hwan;Kim, Seung Jai;Cho, Sung Young
    • Korean Chemical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.694-702
    • /
    • 2002
  • Activated carbons have been used as adsorbents in various industrial application, such as solvent recovery, gas separation, deodorization, and catalysts. In this study, the effects of residual water on the activated carbon adsorbent surface on the adsorption capacity of $CCl_4$ were investigated. Adsorption behavior in a fixed bed was studied in terms of feed concentration, flow rate, breakthrough curve and adsorption capacity for $CCl_4$. Desorption characteristics of residual water on activated carbon were also studied. The water contents of the activated carbon were varied in the range of 0-20%(w/w) and all experiments were performed at 298.15 K. The adsorption equilibrium data $CCl_4$ on the activated carbon were well expressed by Langmuir isotherm. The adsorption capacity of $CCl_4$ decreased with increasing residual water content. Desorption of residual water in activated carbon decreased expotentially with $CCl_4$ adsorption. The obtained breakthrough curves using LDF(linear driving force) model represented our experimental data.

The Performance of the Combined Operation of Sprinkler and Smoke Curtain for Smoke Control in the Sloped Stairway Corridor (경사통로로 전파되는 연기에 대한 스프링클러와 제연커텐의 통합제연성능)

  • Jeon, Heung-Kyun;Choi, Young-Sang;Choo, Hong-Lok
    • Fire Science and Engineering
    • /
    • v.20 no.4 s.64
    • /
    • pp.1-12
    • /
    • 2006
  • In this study, CFD computer simulations by FDS are carried out in order to confirm the performance of the combined operation of both sprinkler system and smoke curtain of 0.54 m depth installed for cooling and blocking the smoke which propagates beneath the sloped ceiling of a stairway corridor of which dimensions are 17.92 m long, 4.00 m wide, and 6.12 m high. It is shown that the response time of sprinklers decreases with fire size and it increases more about 1.1 second in case without smoke curtain than in case with smoke curtain, that the time of smoke transport from the fire source to the stairway outlet decreases considerably with fire size, and that the delay effect of smoke transport is not related to the sprinkler system, whether it is operated or not. This study shows that the combined operation of both sprinkler system and smoke curtain is very effective in smoke cooling, but it is a little for effect on smoke blockage. Although the hazard of skin burn due to radiative heat flux from hot smoke layer is decreased by spray cooling effect, the hazard of smoke suffocation and the weakening of visibility is increased by smoke downdrag and the turbulence of smoke-air mixing due to water spray. These conditions may result in preventing occupants from going out of the stairway during evacuation.

Site Suitability Assessment Using the Habitat Suitability Index for Oyster (Crassostrea gigas) in Jaran Bay, Korea (서식지 적합 지수를 이용한 자란만 굴(Crassostrea gigas)의 어장적지평가)

  • Yong-Hyeon Choi;Sok Jin Hong;Dae In Lee;Won Chan Lee;Seung Ryul Zeon;Yoon-Sik Cho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.427-434
    • /
    • 2023
  • Oysters are an important organism, accounting for an average of 76% of shellfish aquaculture production. In this study, optimal habitat was searched for by calculating the Habitat Suitability Index (HSI) using water temperature, salinity, hydrodynamics, DO, SS and Chl.a in Jaran Bay. As a result, the inside of Jaran Bay was found to be a more suitable habitat than the outside with a wide entrance and rapid hydrodynamics. Oyster production and HSI showed a significant correlation (0.710, p<0.05). Hydrodynamics helps the growth of aquaculture organisms, such as food supply through seawater exchange in the bay, which showed a high correlation (0.709, p<0.05) with oyster production. It was found to have a greater effect on habitat suitability than Chl.a. The results of this study are expected to be helpful for the efficient conservation, use and management of coastal fisheries.

The Heat Transfer Performance of a Heat Pipe for Medium-temperature Solar Thermal Storage System (중온 태양열 축열조용 히트파이프의 열이송 성능)

  • Park, Min Kyu;Lee, Jung Ryun;Boo, Joon Hong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.69-69
    • /
    • 2011
  • 태양열 발전 플랜트에 사용되는 중고온 범위의 축열조에 고체-액체간 상변화를 수행하는 용융염을 축열물질로 사용하면 액체상 또는 고체상만으로 된 열저장 매체에 비해 축열조의 규모를 축소함과 동시에 축열온도의 균일성 향상에 기여할 수 있다. 중온인 $250{\sim}400^{\circ}C$ 범위에서 이용 가능한 용융염으로는 질산칼륨($KNO_3$), 질산리튬($LiNO_3$)등이 있다. 그러나 이러한 용융염의 가장 큰 단점은 열전도율이 매우 낮다는 것이며, 이로 인해 요구되는 열전달률을 성취하기 위해서는 많은 열접촉면적이 필요하다는 것이다. 이러한 단점을 극복하는 방법을 도입하지 않고서는 축열시스템의 소규화를 성취하는데 큰 효과를 가져올 수 없다. 한편 열수송 성능이 탁월한 히트파이프를 사용하면 열원 및 열침과 축열물질 사이의 열전달 효율을 증가시켜 시스템의 성능 향상과 동시에 소규모화에 기여할 수 있다. 중온 범위 히트파이프의 작동유체로서 다우섬-A(Dowtherm-A)는 $150^{\circ}C$이상 $400^{\circ}C$까지의 범위에서 소수에 불과한 선택적 대안 중 하나이다. 따라서 본 연구에서는 용융염을 사용하는 중온 태양열축열조에 적용 가능한 다우섬-A 히트파이프의 성능을 파악하여 기술적 자료를 제시하고자 하였다. 열원으로는 고온 고압의 과열증기, 그리고 열침으로는 중온의 포화증기를 고려하였다. 용융염 축열조를 수직으로 관통하는 히트파이프는 하단부에서 열원 증기와 열교환 가능하며, 중앙부에서 축열물질과 열교환하고, 상단부에서는 중온 증기와 접촉할 수 있도록 배치하였다. 축열모드에서는 히트파이프의 하단부가 증발부로 작동하고, 중앙부가 응축부로 작동하여 용융염으로 열을 방출하면 용융염의 온도가 상승하고 용융점에 도달하면 액상으로의 상변화가 진행되면서 축열이 활성화된다. 축열모드에서 히트파이프의 상단부는 단열부로 작동한다. 방열과정에서는 히트파이프의 하단부가 단열된 상태이고, 중앙부는 용융염으로부터 열을 받아 증발부로 작동하며, 상단부는 중온 증기로 열을 방출하므로 응축부로 작동한다. 즉, 축열시스템의 작동모드에 따라 하나의 히트파이프에서 증발부, 응축부, 단열부의 위치가 변하게 된다. 특히, 히트파이프의 중앙 부분이 응축부에서 증발부로 전환될 때에도 작동이 보장되려면 내부 작동유체의 연속적인 재순환이 가능해야 하므로, 일반 히트파이프에서와는 달리 초기 작동액체의 충전량을 증발부 전체의 체적보다 더 많이 과충전해야 한다. 이러한 히트파이프의 성능 파악을 위한 실험에서 고려한 변수들은 열부하, 작동액체의 충전률, 작동온도 등이며, 열수송 성능의 지표로서는 유효열전도율과 열저항을 이용하였다. 중온범위에서 적정한 작동온도를 성취하기 위해 실험에서는 전압 조절기로 열부하를 조절하는 동시에 항온조로 응축부의 냉각수 입구 온도를 제어하였다. 하나의 히트파이프에 대해서 최대 1 kW까지의 열부하에서 냉각수 입구 온도를 $40^{\circ}C$에서 $80^{\circ}C$ 범위로 변화시키면 히트파이프 작동온도를 약 $250^{\circ}C$ 내외로 조절 가능하였다. 히트파이프 작동액체 충전률은 윅구조물의 공극 체적을 기준으로 372%에서 420%까지 변화 시켰다. 실험 결과를 토대로 열저항과 유효 열전도율을 각각 입력 열유속, 작동온도, 작동액체 충전률 등의 함수로 제시했다. 동일한 냉각수 온도에서는 충전률이 높을수록 히트파이프의 작동온도가 감소하였다. 열저항 값의 범위는 최소 $0.12^{\circ}C/W$에서 최대 $0.15^{\circ}C/W$까지로 나타났으며 유효 열전도율의 값은 최소 $7,703W/m{\cdot}K$에서 최대 $8,890W/m{\cdot}K$까지 변화했다. 최소 열저항은 충전률 420%인 경우에 나타났는데 이때의 작동온도는 약 $262^{\circ}C$이었다. 히트파이프의 작동한계로서 드라이아웃(dry-out)은 충전률 372%의 경우에 열부하 950 W에서 발생하였으나, 그 이상의 충전률에서는 열부하 1060 W까지 작동한계 발생이 관찰되지 않았다. 실험 결과 본 연구에서의 히트파이프는 중온 태양열 축열조에 적용되어 개당 약 1 kW의 열부하를 이송하면서 축열물질 및 축방열 대상 유동매체와 열교환을 하는데 사용하는데 충분할 것이라 판단된다.

  • PDF

Effects of Nursery Environmental Factors on the Growth of Pacific Oyste, Crassostrea gigas (양식어장 환경요인이 참굴 (Crassostrea gigas)의 성장에 미치는 영향)

  • 배평암;한창희
    • Journal of Aquaculture
    • /
    • v.11 no.3
    • /
    • pp.391-400
    • /
    • 1998
  • This study was performed to investigate the effects of environmental parameters on the growth of Pacific oyster, Crassostrea gigas at old suspended culturing grounds of Korsung Bay and newly deveoped bottom, culturing grounds of Haenam region located in southern coast of Korea. The Kosung Bay was semiclosed and water exchange occurred through the small mouth and the current speed was very slow as the value of below 0.5kn. Haenam was opened and littoral zone. Current speed of the surroundings of this Bay about to 5.0knand transparency was low with the mean depth of 1.2m by the resuspension of the sediments. Water temperature and salinity regimes were suitable for oysters at those sites, however the mean value of those parameters and seasonal fluctuations was high at Kosung. The mean concentration of dissolved oxygen in survey area was above $5.0mg/\ell$. In Kosung, however, it was decreasing in June and showed the minimum with the concentration of $4.0mg/\ell$ in August at the bottom layer and recovered in September. Eutrophication parameters such as COD were 1.44 mg/l at this location. This mean value was higher than that of the Haenam Bay's $0.96mg/\ell$. The men value of chlorophyll-$\alpha$ at Haenam was two times higher than the other sites. Growth of shell height and meat weight of oysters at Kosung Bay were higher and the fatness was lower compared to thost of Haenam. As a result, absolute growth of oysters was high at Kosung and allometric growth, such as fatness, was good at Haenam. Low water temperature and frequent exposure of oysters to the air during ebb tide may retard the shell growth. On the other hand, relatively high food availability was profitable for the fatness at haenam site.

  • PDF

Comparison of Seawater Exchange Rate of Small Scale Inner Bays within Jinhae Bay (수치모델을 이용한 진해만 내 소규모 내만의 해수교환율 비교)

  • Kim, Nam Su;Kang, Hoon;Kwon, Min-Sun;Jang, Hyo-Sang;Kim, Jong Gu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.1
    • /
    • pp.74-85
    • /
    • 2016
  • For the assessment of seawater exchange rates in Danghangpo bay, Dangdong bay, Wonmun bay, Gohyunsung bay, and Masan bay, which are small-scale inner bays of Jinhae bay, an EFDC model was used to reproduce the seawater flow of the entire Jinhae bay, and Lagrange (particle tracking) and Euler (dye diffusion) model techniques were used to calculate the seawater exchange rates for each of the bays. The seawater exchange rate obtained using the particle tracking method was the highest, at 60.84%, in Danghangpo bay, and the lowest, at 30.50%, in Masan bay. The seawater exchange rate calculated based on the dye diffusion method was the highest, at 45.40%, in Danghangpo bay, and the lowest, at 34.65%, in Masan bay. The sweater exchange rate was found to be the highest in Danghangpo bay likely because of a high flow velocity owing to the narrow entrance of the bay; and in the case of particle tracking method, the morphological characteristics of the particles affected the results, since once the particles get out, it is difficult for them to get back in. Meanwhile, in the case of the Lagrange method, when the particles flow back in by the flood current after escaping the ebb current, they flow back in intact. However, when a dye flows back in after escaping the bay, it becomes diluted by the open sea water. Thus, the seawater exchange rate calculated based on the dye diffusion method turned out to be higher in general, and even if a comparison of the sweater exchange rates calculated through two methods was conducted under the same condition, the results were completely different. Thus, when assessing the seawater exchange rate, more reasonable results could be obtained by either combining the two methods or selecting a modeling technique after giving sufficiently consideration to the purpose of the study and the characteristics of the coastal area. Meanwhile, through a comparison of the degree of closure and seawater exchange rates calculated through Lagrange and Euler methods, it was found that the seawater exchange rate was higher for a higher degree of closure, regardless of the numerical model technique. Thus, it was deemed that the degree of closure would be inappropriate to be used as an index for the closeness of the bay, and some modifications as well as supplementary information would be necessary in this regard.

Characteristics of Mass Transport Depending on the Feature of Tidal Creek at Han River Estuary, Gyeong-gi Bay, South Korea (경기만 염하수로에서의 비정규 격자 수치모델링을 통한 조간대 조수로의 고려에 따른 Mass Transport 특성)

  • Kim, Minha;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.2
    • /
    • pp.41-51
    • /
    • 2013
  • The tidal creek dependent mass transport characteristic in Gyeong-Gi Bay (west coast of Korea) was studied using field measured data and numerical model. Gyeong-Gi Bay consists of 3 main tidal channels and contains a well-developed vast tidal flat. This region is famous for its large tidal difference and strong current. We aim to study the effect of tidal creek in the tidal flat on the mass exchange between the estuary and the ocean. For numerical application, the application of unstructured grid feature is essential, since the tidal creek has complicated shape and form. For this purpose, the FVCOM is applied to the study area and simulation is performed for 2 different cases. In case A, geographic characteristics of the tidal creek is ignored in the numerical grid and in case B, the tidal creek are constructed using unstructured grid. And these 2 cases are compared with the field measured cross-channel mass transport data. The cross-channel mass transport at the Yeomha waterway mouth and Incheon harbor was measured in June, 9~10 (Spring tide) and 17~18 (Neap tide), 2009. CTD casting and ADCP cross-channel transect was conducted 13 times in one tidal cycle. The observation data analysis results showed that mass transport has characteristic of the ebb dominance Line 1 (Yeomha waterway mouth), on the other hand, a flood dominant characteristic is shown in Line 2 (Incheon harbor front). By comparing the numerical model (case A & B) with observation data, we found that the case B results show much better agreement with measurement data than case A. It is showed that the geographic feature of tidal creek should be considered in grid design of numerical model in order to understand the mass transport characteristics over large tidal flat area.

Numerical Simulation of the Formation of Oxygen Deficient Water-masses in Jinhae Bay (진해만의 빈산소 수괴 형성에 관한 수치실험)

  • CHOI Woo-Jeung;PARK Chung-Kill;LEE Suk-Mo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.4
    • /
    • pp.413-433
    • /
    • 1994
  • Jinhae Bay once was a productive area of fisheries. It is, however, now notorious for its red tides; and oxygen deficient water-masses extensively develop at present in summer. Therefore the shellfish production of the bay has been decreasing and mass mortality often occurs. Under these circumstances, the three-dimensional numerical hydrodynamic and the material cycle models, which were developed by the Institute for Resources and Environment of Japan, were applied to analyze the processes affecting the oxygen depletion and also to evaluate the environment capacity for the reception of pollutant loads without dissolved oxygen depletion. In field surveys, oxygen deficient water-masses were formed with concentrations of below 2.0mg/l at the bottom layer in Masan Bay and the western part of Jinhae Bay during the summer. Current directions, computed by the $M_2$ constituent, were mainly toward the western part of Jinhae Bay during flood flows and in opposite directions during ebb flows. Tidal currents velocities during the ebb tide were stronger than that of the flood tide. The comparision between the simulated and observed tidal ellipses showed fairly good agreement. The residual currents, which were obtained by averaging the simulated tidal currents over 1 tidal cycle, showed the presence of counterclockwise eddies in the central part of Jinhae Bay. Density driven currents were generated southward at surface and northward at the bottom in Masan Bay and Jindong Bay, where the fresh water of rivers entered. The material cycle model was calibrated with the data surveyed in the field of the study area from June to July, 1992. The calibrated results are in fairly good agreement with measured values within relative error of $28\%$. The simulated dissolved oxygen distributions of bottom layer were relatively high with the concentration of $6.0{\sim}8.0mg/l$ at the boundaries, but an oxygen deficient water-masses were formed within the concentration of 2.0mg/l at the inner part of Masan Bay and the western part of Jinhae Bay. The results of sensitivity analyses showed that sediment oxygen demand(SOD) was one of the most important influence on the formation of oxygen depletion. Therefore, to control the oxygen deficient water-masses and to conserve the coastal environment, it is an effective method to reduce the SOD by improving the polluted sediment. As the results of simulations, in Masan Bay, oxygen deficient water-masses recovered to 5.0mg/l when the $50\%$ reduction in input COD loads from Masan basin and $70\%$ reduction in SOD was conducted. In the western part of Jinhae Bay, oxygen deficient water-masses recovered to 5.0mg/l when the $95\%$ reduction in SOD and $90\%$ reduction in culturing ground fecal loads was conducted.

  • PDF

Feasibility Study on Double Path Capacitive Deionization Process for Advanced Wastewater Treatment (이단유로 축전식 탈염공정의 하수고도처리 적용가능성 평가)

  • Cha, Jaehwan;Shin, Kyung-Sook;Lee, Jung-Chul;Park, Seung-Kook;Park, Nam-Su;Song, Eui-Yeol
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.4
    • /
    • pp.295-302
    • /
    • 2014
  • This study demonstrates a double-path CDI as an alternative of advanced wastewater treatment process. While the CDI typically consists of many pairs of electrodes connected in parallel, the new double-path CDI is designed to have series flow path by dividing the module into two stages. The CFD model showed that the double-path had uniform flow distribution with higher velocity and less dead zone compared with the single-path. However, the double-path was predicted to have higher pressure drop(0.7 bar) compared the single-path (0.4 bar). From the unit cell test, the highest TDS removal efficiencies of single- and double-path were up to 88% and 91%, respectively. The rate of increase in pressure drop with an increase of flow rate was higher in double-path than single-path. At 70 mL/min of flow rate, the pressure drop of double-path was 1.67 bar, which was two times higher than single-path. When the electrode spacing was increased from 100 to $200{\mu}m$, the pressure drop of double-path decreased from 1.67 to 0.87 bar, while there was little difference in TDS removal. When proto type double-path CDI was operated using sewage water, TDS, $NH_4{^+}$-N, $NO_3{^-}$-N and $PO_4{^{3-}}$-P removal efficiencies were up to 78%, 50%, 93% and 50%, respectively.

Flow Resistance and Modeling Rule of Fishing Nets 4. Flow Resistance of Trawl Nets (그물어구의 유수저항과 모형수칙 4. 트롤그물의 유수저항)

  • KIM Dae-An
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.5
    • /
    • pp.691-699
    • /
    • 1997
  • In order to find out the properties in flow resistance of trawlR=1.5R=1.5\;S\;v^{1.8}\;S\;v^{1.8} nets and the exact expression for the resistance R (kg) under the water flow of velocity v(m/sec), the experimental data on R obtained by other, investigators were pigeonholed into the form of $R=kSv^2$, where $k(kg{\cdot}sec^2/m^4)$ was the resistance coefficient and $S(m^2)$ the wall area of nets, and then k was analyzed by the resistance formular obtained in the previous paper. The analyzation produced the coefficient k expressed as $$k=4.5(\frac{S_n}{S_m})^{1.2}v^{-0.2}$$ in case of bottom trawl nets and as $$k=5.1\lambda^{-0.1}(\frac{S_n}{S_m})^{1.2}v^{-0.2}$$ in midwater trawl nets, where $S_m(m^2)$ was the cross-sectional area of net mouths, $S_n(m^2)$ the area of nets projected to the plane perpendicular to the water flow and $\lambda$ the representitive size of nettings given by ${\pi}d^2/2/sin2\varphi$ (d : twine diameter, 2l: mesh size, $2\varphi$ : angle between two adjacent bars). The value of $S_n/S_m$ could be calculated from the cone-shaped bag nets equal in S with the trawl nets. In the ordinary trawl nets generalized in the method of design, however, the flow resistance R (kg) could be expressed as $$R=1.5\;S\;v^{1.8}$$ in bottom trawl nets and $$R=0.7\;S\;v^{1.8}$$ in midwater trawl nets.

  • PDF