• Title/Summary/Keyword: 입구 유량 제어 밸브

Search Result 12, Processing Time 0.028 seconds

Vortex Valve의 설계인자 및 성능특성 분석

  • 김영인;황영동;장문희
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.487-494
    • /
    • 1995
  • 원자력발전소의 안전성 향상을 목적으로 신형원자로 안전주입계통의 축압기 설계에 적용이 고려되고 있는 피동적 유량조절 장치인 vortex 밸브의 유동장을 해석하여 밸브의 특성에 영향을 미치는 주요 인자들을 도출하고 이 인자들의 영향을 분석하였다. 분석 결과 Vortex 밸브의 성능 특성은 수송유량, 제어유량, chamber의 반경, 입구면적, 마찰계수 등의 영향을 받는 것으로 나타났으며 이들 인자 중 chamber의 반경의 영향이 가장 크고 Reynolds수의 영향은 비교적 작은 것으로 파악되었다. 또한 주어진 유동조건에서 제어유량이 작은 경우 점성손실이 vortex 밸브의 유동특성에 미치는 영향이 증대되는 경향을 보였으며 유량이 증가할수록 Reynolds수의 영향은 감소하는 것으로 나타났다.

  • PDF

Experimental Study of Compressor Surge for 250-hp Class Vehicular Turbocharger (250마력 급 차량용 터보차저 서지현상에 대한 실험적 연구)

  • Lee, Hyungchang;Han, Jaeyoung;Lee, Myeonghee;Im, Seokyoen;Yu, Sangseok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.89-95
    • /
    • 2015
  • A surge phenomenon cause noise and pulsations in a turbo compressor, which is an unstable operating regime. Because surge protection ensures a safe compressor operation, it is important to understand the physics of the surge phenomenon. In this study, the surge characteristics of a 250-hp class turbo-compressor were evaluated experimentally. The experimental parameters were the rotational speed, opening angles of the inlet guide vane and exit valve, and inlet pipe diameter and flow rates of the inlet gases. The results showed that the compressor surge was very sensitive to the gas flow rates, exit pressure, rotational speed, and bypass flow rates.

A Study on Dynamic Characteristics of Hydraulic Transmission Line by Finite Difference Method (有限差分法을 利용한 油壓管路의 特性에 관한 硏究)

  • 오철환;정선국;송창섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.15-24
    • /
    • 1986
  • Pressure trasients must deal with safety problem of system. For identification of physical situation that can and method of limiting surges are essential consideration in sucessful design. The finite difference equation by method of characteristics are derived from the governing equation of unsteady flow in a pipe, and solved by using boundary condition derived. A computer program which can simulate general hydraulic system is developed by using finite difference equations and boundary conditions derived. The sumulated resulted by developed computer program are in fair agreement with experiment result.

A Study on the High Pressure Pump Simulation Model of a Diesel Injection System (디젤 분사시스템의 고압펌프 시뮬레이션 모델에 대한 연구)

  • Kim, Joongbae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.102-109
    • /
    • 2017
  • The high pressure pump of a diesel injection system compresses the fuel supplied at low pressure into high pressure fuel and maintains the fuel of the common rail at the required pressure level according to the engine operating conditions. The high pressure pump is required to operate normally in order to compress the fuel to a high pressure of 2000 bar during the entire lifetime of the vehicle. Consequently, a suitable design technique, material durability and high precision machining are required. In this study, the high pressure pump simulation model of a 1-plunger radial piston pump is modelled by using the AMESim code. The main simulation parameters are the displacement, flow rate and pressure characteristics of the inlet and outlet valves, cam torque characteristics, and operating characteristics of the fuel metering valve and overflow valve. In addition, the operating characteristics of the pump are simulated according to the parameter changes of the hole diameter and the spring initial force of the inlet valve. The simulation results show that the operation of the developed pump model is logically valid. This paper also proposes a simulation model that can be used for current pump design changes and new pump designs.

Computational Approach to Improve Diesel Engine Coolant Flow Characteristics (디젤엔진 냉각수 유동특성 개선을 위한 수치해석적 접근방법)

  • Lee, Sung-Won;Park, Sung-Young
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05b
    • /
    • pp.1133-1136
    • /
    • 2010
  • 2600cc급 디젤엔진의 냉각수 유동특성 개선을 위한 수치해석적 방법을 제시하기 위하여 본 연구가 수행되었다. 실린더 블록 및 헤드의 유동특성 분석을 위하여 개스킷 냉각수 통로의 면적과 갯수가 중점적으로 고려되었다. 베이스 모델의 수치해석적 분석에서 입구측에 치우친 냉각수 홀의 배치에 의하여 1, 2번 실린더 헤드로만 주 유동이 발생되었다. 이러한 문제점을 개선하기 위하여 개스킷 냉각수 통로를 재설계하였다. 수정모델은 주 유동이 4번 실린더 측으로 유도되었으며, 배기밸브 사이의 유동도 개선되었다. 재설계과정에서 개스킷 냉각수통로의 전체면적을 고려치 않게 되면 유량이 줄어들게 되는 문제점이 발견되었다. 본 연구를 통하여 실린더 헤드와 블록사이의 냉각수 유동을 제어하는 개스킷의 중요성을 확인하였으며, 냉각수 유동특성 최적화는 개스킷 홀의 총 면적을 고려하여 냉각수의 총질량유량을 설계하여야 한다.

  • PDF

Numerical Analysis for Evaluation of Ejection Capacity Relationship of Safety Valves in Pressure Regulating Station(I) - Flow Analysis and Mass Flow Rate Verification of Pressure Regulator - (정압기지내의 안전밸브 분출용량 관계식 검증을 위한 유동해석(I) - 정압기 유동 해석 및 질량 유량 검증 -)

  • Gwon, Hyuk-Rok;Roh, Kyung-Chul;Kim, Young-Seop;Lee, Seong-Hyuk
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.99-104
    • /
    • 2008
  • Gas pressure regulators in pressure regulating station reduce high-pressure gas in a process line to a lower. Gas pressure regulators are not flow control devices, they are used to control delivery pressure only. For the safety of pressure regulating station, it is essential to study flow regime and characteristics of a safety valves that is connected to a pressure regulator. For this, it is necessary to understand flow characteristics and the flow rate of upstream component part such as gas pressure regulators in regulating station. In the present study, numerical analysis of flow characteristics and the mass flow rate of a pressure regulator is conducted under the several inlet, outlet conditions and open rates. Then, the numerical result of the mass flow rate is verified with experimental equation from manufacture of pressure regulator. Consequently, the numerical result is comparatively good agreement with values from experimental equation.

  • PDF

Study on the performance improvement of a Main Oxidizer shut-off Valve (CC 산화제 개폐밸브 성능향상에 관한 연구)

  • Bae, Young-Woo;Kim, Do-Hyung;Hong, Moon-Geun;Lee, Soo-Yong;Jang, Ki-Won
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.63-72
    • /
    • 2010
  • MOV(Main Oxidizer shut-off Valves) control the combustion of launch vehicle systems by the supply and the isolation of liquid oxygen to a main combustion chamber in launch vehicle systems. Moreover, the MOV should secure a constant flow rate of liquid oxygen for combustion instability in the steady operational state. Although it has been showed that a EM(Engineering Model) with a high discharge coefficient value compared with the TM(Technology Model) fills the overall performance requirements, additional design modifications in some critical parts of the EM were conducted to improve the performance. The configurations of the pressure-control body, the middle flange, and the rips of the inlet body of the EM were modified and the performance tests have been performed with test models. Consequently, the intended improvements have been verified by the performance tests.

Characteristics of Temperature Control by Hot-gas Bypass Flow Rate on Industrial Water Cooler (핫가스 바이패스 유량에 따른 산업용 냉각기의 온도제어 특성)

  • Baek, Seung-Moon;Choi, Jun-Hyuk;Byun, Jong-Yeong;Moon, Choon-Geun;Lee, Ho-Saeng;Jeong, Seok-Kwon;Yoon, Jung-In
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1129-1136
    • /
    • 2009
  • The paper presents the performance characteristics for a cooling system using EEV. The water cooler was used to reduce thermal deformation and contraction due to high speed of machine tools and the EEV was used for capacity control for water cooler. The apparatus was designed for hot-gas bypass system which a hot-gas can flows from outlet of compressor to the inlet of evaporator. This experiment is the intermediary study for precise temperature control through PID control. The results show that the evaporator pressure increased and refrigeration capacity decreased as the EEV opening step of hot-gas bypass increased. These results can be used as basic data for the design of effective water cooler.

Manufacture of Control and Data Acquisition System of Centrifugal Thin Film Evaporator(Centri-Therm, CT-1B) by Computer (컴퓨터를 이용한 원심식 박막증발기의 제어 및 자료 수집 시스템의 제작)

  • Park, Noh-Hyun;Kim, Byeong-Sam;Park, Moo-Hyun;Han, Bong-Ho;Bae, Tae-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.479-485
    • /
    • 1990
  • For the automation of a evaporation process, computer based evaporation system was built and applied to acquisition of the process variables with an centrifugal thin film evaporator(Centri-Therm, CT-1B). Controls of the process conditions were performed by computer system for pressure, feeding rate, steam, evaporation temperature and flow rate of cooling water. The data acquisitions were also performed by computer system for the changes in the concentration and temperature readings for steam, evaporation and cooling water at the both inlet and outlet. The control and the acquisition variables were collected through the interface device and analyzed by programs using the PASCAL language. To control the feeding rate during the concentration process, inverter was used. The cooling water for the vapor condensation was controlled by the valve controller and should be supplied with the flow rate of 125 kg/h. The maximum vapor condensation rate was 41.7kg/h at the feeding rate of 125 kg/h.

  • PDF

Performance Characteristics of Water-Chilling Heat Pump Using CO2 on Control of Inverter Frequency (인버터 주파수 제어에 따른 CO2용 수냉식 열펌프의 성능 특성)

  • Son, Chang-Hyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.4721-4726
    • /
    • 2010
  • The performance characteristics of water-chilling heat pump using CO2 for the control of inverter frequency was investigated experimentally. An experimental apparatus is consisted of a compressor, a gas cooler, an expansion valve, an evaporator and a liquid receiver. All heat exchangers used in the test rig are counter flow type heat exchangers with concentric dual tubes, which are made of copper. The gas cooler and the evaporator consist of 6 and 4 straight sections respectively arranged in parallel, each has 2.4m length. The experimental results summarize as the following: for constant inlet temperature of evaporator and gas cooler, as mass flow rate, compression ratio and discharge pressure increases with the inverter frequency. And heating capacity and compressor work increases, but coefficient of performance(COP) decreases with the inverter frequency of compressor. As inlet temperature of secondary fluid in the evaporator increases from $15^{\circ}C$ to $25^{\circ}C$, compression ratio and compressor work decreases, but mass flow rate, heating capacity and COP increases with the inverter frequency of compressor. The above tendency is similar with performance variation with respect to the variation of inverter frequency in the conventional vapor compression refrigeration cycle.