• Title/Summary/Keyword: 입계

Search Result 485, Processing Time 0.029 seconds

Sintered properties of silicon carbide prepared by using the alumina and yttria-coated SiC powder (알루미나 및 이트리아로 코팅된 분말을 사용하여 제조한 탄화규소의 소결물성)

  • Um, Ki-Young;Kim, Hwan;Kang, Hyun-Hee;Lee, Jong-Kook
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.4
    • /
    • pp.645-650
    • /
    • 1998
  • Alumina- and yttria-coated SiC powder was prepared by the surface-induced precipitation method, and sintered properties of silicon carbide prepared from this powder were investigated. After a well dispersion of SiC powders in the aqueous solution of $Al_2(SO_4)_3$ and $Y_2(SO_4)_3$, the mixed precursors of aluminum hydroxide, aluminum carbonate, yttrium hydroxide, and yttrium carbonate were precipitated on the surfaces of SiC particles through the hydrolysis reaction of urea. SiC specimens with alumina and yttria exhibit, 97.8% of theoretical density after the sintering at $1900^{\circ}C$ for 2 hrs. During annealing at $2000^{\circ}C$, $\beta$longrightarrow$\alpha$ phase transformation of SiC had taken place and resulted with a rodlike microstructure. Toughness of sintered SiC was enhanced by crack deflection around the rodlike grains. In case of annealing less than that of 3 hr, the fracture toughness of SiC was slightly improved with increasing the amount of sintering aid. However, annealed specimens for a long time showed constant fracture toughness even though the amount of sintering aid increased. It is resulted that the main factor for toughening in annealed SiC for a long time is the pullout effect of rodlike grains during the propagation of cracks, and the amount of sintering aids is less effective on the fracture toughness of SiC.

  • PDF

Sintering of Surface-Modified PMN-PT-BT Powder with MgO Sol and Its Dielectric Properties (MgO 졸로 표면개질된 PMN-PT-BT 분말의 소결 및 유전특성)

  • Han, Kyoung-Ran;Kim, Chang-Sam
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.12 s.271
    • /
    • pp.929-932
    • /
    • 2004
  • It is known that small amount of MgO in excess is often added to develop pure perovskite single phase of PMN-based composite, however, extra MgO precipitates in grains and inhibits densification of PMN. In this study PMN-PT-BT (PBT) powder was prepared by a conventional mixed oxide method using $(MgCO_3)_4{\cdot}Mg(OH)_2{\cdot}5H_{2}O$ instead of MgO. The precursor was heated at $500^{\circ}C/1h$ and its surface was modified with MgO sol. This effect was investigated in the aspects of sintering and dielectric properties. Small amount of added MgO sol ($0.5{\sim}1.0wt\%$) enhanced sintering substantially below $1000^{\circ}C$. The PBT with $0.5wt\%$ MgO sol sintered at $900^{\circ}C/2h$ had density of $7.62\;g/cm^3$, room temperature dielectric constant of 14800, loss of dielectric constant of $1.1\%$, which were comparable to those of the PBT sintered at $1000^{\circ}C/2h$. It was noticeable that the extra MgO precipitated mostly on triple points and grain boundaries and resulted in inhibition of grain growth.

Oxygen Permeation and Mechanical Properties of La0.6Sr0.4Co0.2Fe0.8O3-δ Membrane with Different Microstructures (미세구조에 따른 La0.6Sr0.4Co0.2Fe0.8O3-δ 분리막의 산소투과 및 기계적 특성)

  • Lee, Shi-Woo;Lee, Seung-Young;Lee, Kee-Sung;Woo, Sang-Kuk;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.10
    • /
    • pp.994-1000
    • /
    • 2002
  • Oxygen permeability and the mechanical properties of mixed ionic-electronic conductive $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ perovskite-type membrane, fabricated by solid state reaction, were investigated with regard to microstructure. The microstructure of the membrane was controlled by changing the sintering temperature and holding time. The average grain size and relative density were evaluated as a function of sintering conditions. As the fraction of grain boundary decreased, oxygen permeability showed a tendency to increase. Especially the maximum oxygen flux of 0.37 ml/$cm^2$${\cdot}$min was measured for the specimen sintered at 1300${\circ}C$ for 10 h, which has high density and relatively large grain size. Fracture strength was dependent on the relative density of sintered body, while fracture toughness increased with average grain size.

Effects of Aging on Properties of MgO-Partially Stabilized Zirconia (마그네시아 부분안정화 지르코니아 소결체의 특성에 미치는 열처리 효과)

  • 정형진;오영제;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.3
    • /
    • pp.243-250
    • /
    • 1987
  • The effects aging on some properties and thermal-shock behavior of zirconia partially stabilized with 9 mol% MgO (9MZ) were studied. 9MZ specimens were aged over $1200^{\circ}$-$1400^{\circ}C$ for 12hours subsequently, after sintering at $1650^{\circ}C$ for 4 hours. Fracture strength(both before and after thermal-shock test), linear thermal expansion, monoclinic fraction and phase transition by XRD, density, galvanic potential and microstructure were measured. Quantitative chemical analysis around the grain-boundary of the specimen aged at $1350^{\circ}C$ was also conducted by EDX. The aging of 9MZ specimen causes a thermal decomposition of cubic-$ZrO^{2}$ into the formation metastable tetragonal-$ZrO^{2}$ and MgO. The former increases the residual strength after thermal-shock test and the latter improves the thermal-shock resistance due to thermal conduction through the continuous magnesia phase and the formation of monoclinic phase content in matrix were increased with decreasing the aging temperature from $1400^{\circ}C$ to $1200^{\circ}C$. Galvanic potential of the aged specimen exhibited a proper emf characteristic.

  • PDF

A Study on the Microstructure and Properties of Y-BA-Cu-O/Ag composite High $T_{c}$ Superconductor prepared by Sinter-forging Process (Sinter forging으로 제조한 Y-BA-Cu-O/Ag 고온 초전도 복합체의 미세조직과 특성)

  • Park, Jong-Hyeon;Kim, Byeong-Cheol;Song, Jin-Tae
    • Korean Journal of Materials Research
    • /
    • v.4 no.1
    • /
    • pp.37-43
    • /
    • 1994
  • Y-Ra-Cu-0 oxide superconductors were fabricated by the sinter-forging method to make the critical current density improve through controlling of microstructure and crystal texture. The grain alignment of oxide superconductor was formed by the sinter-forging process and it's c-axis orientation was parallel to the press direction.The orientation factor of texture increased with sinking temperature and pressure, and also grain alignment was improved by the addition of Ag. As for the sinterforged Y-Ba-Cu-O/Ag sample, the $T_c$(on-set) was not almost varied with the sinter-forging temperature, but $T_c\;^{zero}$ decreased more or less at high sinter-forging temperatures. In addition, it was observed that added-Ag was mainly distributed along the grain boundar~es in the (123) matrix, resulting in the densification of microstructure. From these results, i t was thought that the improvement of $J_c$ over 2000A/$\textrm{cm}^2$ was attributed to the texture, densification of microstructure, and (123) grain growth due to the Ag addition.

  • PDF

An Electrochemical Evaluation on the Corrosion Property of Metallizing Film (용사 도막의 내식성에 관한 전기화학적 평가)

  • Moon, Kyung-Man;Shin, Joong-Ha;Lee, Myung-Hoon;Lee, Sung-Yul;Kim, Yun-Hae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.670-677
    • /
    • 2010
  • There are many surface protection methods for numerous steel structures being used under severely corrosive environment, one of them, metallizing(thermal spray) is a available protection method which is comparatively and recently developed for surrface protection of various steel structures. However coating film obtained by spraying is to be needed increasingly more good corrosion resistance due to accelerating of environmental contamination. In this study, coating films(DFT:$200{\mu}m$) are performed with arc spray by wire metal and their types of films are pure zinc, pure aluminum, alloy film(Al:Zn=85:15) and alloy film(Al:Zn=95:5). And corrosion resistance of their films was investigated with electrochemical methods in seawater solution. Pure aluminum film showed a relatively somewhat good corrosion resistance compared to among those of other films and alloy films also showed a good corrosion resistance compared to pure zinc film. Especially it was observed that pure aluminum film showed a comparatively good corrosion resistance than that of alloy film named as galvarium spray(Al:Zn=85:15) in seawater solution. Morphology of corroded surface of pure zinc film appeared the pattern like intergranlar corrosion, however films of pure aluminum and alloy metal showed a general corrosion pattern.

The Effect of Extrusion Temperature on Microstructure and Thermoelectric Properties of Rapidly Solidified P-type $P-type Bi_{0.5}Sb_{1.5}Te_3$ alloy (급속응고된 $P-type Bi_{0.5}Sb_{1.5}Te_3$ 합금 열전재료의 미세조직과 열전특성에 미치는 압출 온도의 효과)

  • 이영우;천병선;홍순직;손현택
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2001.11a
    • /
    • pp.28-28
    • /
    • 2001
  • $Bi_2Te_3$계 열전반도체 재료는 200 ~ 400K 정도의 저온에서 에너지 변환 효율이 가장 높은 재료로서 열전냉각 및 발전재료로 제조볍 및 특성에 관한 많은 연구가 진행되어 왔다. 전자냉각 모듈의 제조에는 P형 및 N형 $Bi_2Te_3$계 단결정이 주로 사용되고 있으나. $Bi_2Te_3$ 단결정은 C축에 수직한 벽개면을 따라 균열이 쉽게 전파하기 때문에 소자 가공사 수윤 저하가 가장 큰 문제점으로 지적되고 있다. 이에 따라 최근 열전재료의 가공방법에 따른 회수율 증가 및 열전특성 향상에 관한 열간압출, 단조와 같은 연구가 활발히 이루어지고 있다. 본 연구는 가스분사법(gas atomizer)을 이용하여 용질원자 편석의 감소, 고용도의 증가,균일고용체 형성, 결정립미세화 둥 급속응고의 장점을 이용하여 화학적으로 균질한$Bi_2Te_3$계 열전재료 분말을 제조하고, 제조된 분발을 압출가공하여 기계적성질, 소자의 가공성 및 열전 성능 지수율 향상시키는데 연구 목적이 있다. 본 설험에서는 99.9%이상의 고순도 Bi. Te. Se. Sb를 이용하여, 고주파 유도로에서 Ar 분위기로 용융하고, 가스분사법를 이용하여 균질한 $Bi_2Te_3$계 열전재료 분만을 제조하였다. 분말표면의 산화막을 제거하기 위하여 수소분위기에서 환원처리를 행하였고, 된 분말을 Al 캔 주입하여 냉간성형 한 후 진공중에서 압출온도를 변화시켜 열간압출 가공을 행하였다. 압출 온도변화에 따른 압출재의 미세조직 및 열전특성에 중요한 영향을 미치는 C면 배향에 대한 결정방위 해석, 압출재의 압축강도 등을 분석하였으며, 압출온도에 따삼 미세조직 변화와 결정방위의 변화에 따른 열전특성의 관계를 해석하였다성시켰고 이들이 산인 HNO3에서 녹았기 때문이다. 본 연구에서 개발된 새로운 에칭 용액인 90H2O2 - 10HNO3 (vol%)의 에칭 원리가 똑같이 적용 가능한 다른 종류의 초경 합금에서도 사용이 가능할 것으로 판단된다.로 판단된다.멸과정은 다음과 같다. 출발물질인 123 분말이 211과 액상으로 분해될 때 산소가스가 배출되며, 이로 인해 액상에서 구형의 기공이 생성된다. 이들 중 일부는 액상으로 채워져 소멸되나, 나머지는 그대로 남는다. 특히, 시편 중앙에 서는 수십-수백 마이크론 크기의 커다란 기공이 다수 관찰된는데, 이는 기공의 합체로 만들어진 것이다. 포정반응 열처리 시 기공 소멸로 만들어진 액상포켓들은 주변 211 입자와 반응하여 123 영역으로 변한다. 이곳은 다른 지역과 비교하여 211 밀도 가 낮기 때문에, 미반응 액상이 남거나 211 밀도가 낮은 123 영역이 된다. 액상으로 채워지지 못한 구형의 기공들 중 다수가 123 결정 내로 포획되며, 그 형상은 액상/ 기공/고상 계면에너지에 의해 결정된다.단의 경우, 파단면이 매끄럽고 파변상의 결정립도 매우 미세하였으며, 산확물 의 용집도 찾아보기 어려웠 나, 접합부 파단의 경우에는 파변의 굴곡이 비교척 심하고 연성 입계파괴의 형태를 보였£며, 결정립도 모채부 파단의 경우에 비해 조대하였다. 조대하였다. 셋째, 주상기간 중 총 에너지 유입률 지수와 $Dst_{min}$ 사이에 높은 상관관계가 확인되었다. 특히 환전류를 구성하는 주요 입자의 에너지 영역(75~l13keV)에서 가장 높은(0.80) 상관계수를 기록했다. 넷째, 회복기 중에 일어나는 입자들의 유입은 자기폭풍의 지속시간을 연장시키는 경향을 보이며 큰 자기폭풍일수록 현저했다. 주상에서 관측된 이러한 특성은 서브스톰 확장기 활동이 자기폭풍의

  • PDF

Corrosion and Oxidation Properties of Ni-Base Superalloy KM 1557 (Ni기 초내열 단조합금 KM 1557의 부식 및 산화성질)

  • Choi, Hyoung Il;Kim, Hyon Tae;Kim, Young Do;Yoon, Kook Han;Yoo, Myoung Ki;Kwun, Sook In;Choi, Ju
    • Analytical Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.143-152
    • /
    • 1992
  • Corrosion resistances in various acids and high temperature oxidation properties have been investigated for the Ni-base superalloy KM 1557. Corrosion tests were performed in $H_2SO_4$, HCl, $HNO_3$, $H_3PO_4$ and $CH_3COOH$. Oxidation tests were carried out in air for 20 and 110hrs at $900^{\circ}C$, $950^{\circ}C$ and $1050^{\circ}C$. Hot corrosion tests were done in salt bath of 75% $Na_2SO_4-25%$ NaCl at $900^{\circ}C$ for 20hrs. After the tests, the samples were observed by optical microscopy and analysed by EPMA and X-ray mapping in order to investigate the distribution of composition. It was shown that corrosion resistances in various acids and hot salt bath were proven to be excellent. It was suggested that the amounts of oxides were determined mainly by the depth of internal and intergranular $Al_2O_3$ oxide layers.

  • PDF

Oxygen Permeation and Syngas Production of La0.7Sr0.3Ga0.6Fe0.4O Oxygen Permeable Membrane (La0.7Sr0.3Ga0.6Fe0.4O 분리막의 산소투과특성 및 합성가스의 생성)

  • 이시우;이승영;이기성;정경원;김도경;우상국
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.6
    • /
    • pp.594-600
    • /
    • 2003
  • L $a_{0.7}$S $r_{0.3}$G $a_{0.6}$F $e_{0.4}$ $O_{3-}$$\delta$/ perovskite-type mixed conducting membranes, which could permeate oxygen selectively, have been fabricated and the microstructural features developed by varying the sintering conditions have been analyzed. The effects of surface modification and the membrane thickness on oxygen permeability have been evaluated under He/air environment. With increasing a grain boundary fraction, the overall oxygen permeability decreased. The syngas (CO+ $H_2$) has been produced by partial oxidation reaction of methane with the oxygen permeated through the membrane. Methane conversion and syngas yield have been evaluated as functions of the compositional ratio of feed gas and reaction temperature. In long-term duration test for 600 h, under C $H_4$+He/air environment, L $a_{0.7}$S $r_{0.3}$G $a_{0.6}$F $e_{0.4}$ $O_{3-}$$\delta$/ membrane showed a highly stable performance.

Effects of stabilizing elements on mechanical and electrochemical characteristics of stainless steel in marine environment (안정화 원소 첨가에 따른 스테인리스강의 기계적 특성과 해수환경 하에서의 전기화학적 특성)

  • Lee, Jung-Hyung;Choi, Yong-Won;Jang, Seok-Ki;Kim, Seong-Jong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1087-1093
    • /
    • 2014
  • Stainless steels stabilized with Ti or Nb are largely used in offshore and shipbuilding industries due to its excellent corrosion resistance. In this study, carbide stabilizers, Ti and Nb, were added to stainless steel 304 specimens with different concentrations(Ti: 0.26%, 0.71%, Nb: 0.29%, 0.46%, 0.71%), and their mechanical and electrochemical characteristics were evaluated. Micro-Vickers hardness testing was employed to characterize the mechanical characteristics with alloying elements. Electrochemical evaluation techniques including Tafel analysis, cyclic polarization experiment, galvanostatic experiment were utilized to compare the corrosion characteristics of the specimens. The result of hardness tests revealed that Nb containing specimens showed increasing hardness with increasing alloying contents while adding Ti had little effect on increase in hardness. In the case of electrochemical measurements, the electrochemical characteristics of the specimens were enhanced with increasing Nb contents while they were deteriorated with increasing Ti contents. As a result, different stabilizers and their contents may produce significant differences in electrochemical characteristics, and there such effect must be taken account of in development of stainless steels for marine environment.