• Title/Summary/Keyword: 임피던스 방법

Search Result 779, Processing Time 0.02 seconds

Electrochemical Characteristics of Electrode by Various Preparation Methods for Alkaline Membrane Fuel Cell (알칼리막 연료전지용 전극의 제조방법에 따른 전기화학적 특성 분석)

  • Yuk, Eunsung;Lee, Hyejin;Jung, Namgee;Shin, Dongwon;Bae, Byungchan
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.4
    • /
    • pp.106-112
    • /
    • 2021
  • Catalyst poisoning by ionomers in membrane electrode assemblies of alkaline membrane fuel cells has been reported recently. We tried to improve the membrane electrode assembly's performance by controlling the solvent's ratio during electrode manufacturing. 4 Different mixing ratios of N-Methyl-2-pyrrolidone (NMP) and ethylene glycol (EG) gave four different cathode electrodes with platinum and Fuma-Tech ionomers. The electrode with higher EG improved polarization performance by about 36% compared to the NMP-based commercial ionomer. The dependence of the ionomer's dispersibility on the solvent seems responsible for the difference, which means that the non-uniform distribution of ionomers improves the performance of the electrode. High-frequency resistance, internal resistance corrected polarization curve, Tafel slope, mass activity, and impedance spectroscopy characterized the electrode. We can find that the existence of poor solvent improves cathode electrode performance. It seems to be the result of reduced poisoning of the catalyst according to the particle size distribution of the ionomer.

Electrochemical Characteristics of Pencil Graphite Electrode Through Surface Modification and its Application of Non-enzymatic Glucose Sensor (표면 개질된 샤프심 전극의 전기화학적 특성 고찰 및 비효소적 글루코스 센서 활용)

  • Min-Jung Song
    • Korean Chemical Engineering Research
    • /
    • v.62 no.2
    • /
    • pp.147-152
    • /
    • 2024
  • Most medical sensors are disposable products. In order to reduce inspection and diagnosis costs, it is more important to develop the inexpensive electrode materials. We fabricated the CuO NPs/PANI/E-PGE as an electrode material for disposable electrochemical sensors and applied it to a non-enzymatic glucose sensor. For surface activation of PGE, pretreatment was performed using chemical and electrochemical methods, respectively. Electrochemical properties according to the pretreatment method were analyzed through chronoamperometry (CA), cyclic voltammetry (CV) and electrochemical impedance (EIS). From these analytical results, the electrochemically pretreated PGE (E-PGE) was finally adopted. The non-enzymatic glucose sensor based on CuO NPs/PANI/E-PGE shows sensitivity of 239.18 mA/mM×cm2 (in a linear range of 0.282~2.112 mM) and 36.99 mA/mM×cm2 (3.75423~50 mM), detection limit of 17.6 μM and good selectivity. Based on the results of this study, it was confirmed that the modified PGE is a high-performance electrode material. Therefore, these electrodes can be applied to a variety of disposable sensors.

Nondestructive Quantification of Corrosion in Cu Interconnects Using Smith Charts (스미스 차트를 이용한 구리 인터커텍트의 비파괴적 부식도 평가)

  • Minkyu Kang;Namgyeong Kim;Hyunwoo Nam;Tae Yeob Kang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.28-35
    • /
    • 2024
  • Corrosion inside electronic packages significantly impacts the system performance and reliability, necessitating non-destructive diagnostic techniques for system health management. This study aims to present a non-destructive method for assessing corrosion in copper interconnects using the Smith chart, a tool that integrates the magnitude and phase of complex impedance for visualization. For the experiment, specimens simulating copper transmission lines were subjected to temperature and humidity cycles according to the MIL-STD-810G standard to induce corrosion. The corrosion level of the specimen was quantitatively assessed and labeled based on color changes in the R channel. S-parameters and Smith charts with progressing corrosion stages showed unique patterns corresponding to five levels of corrosion, confirming the effectiveness of the Smith chart as a tool for corrosion assessment. Furthermore, by employing data augmentation, 4,444 Smith charts representing various corrosion levels were obtained, and artificial intelligence models were trained to output the corrosion stages of copper interconnects based on the input Smith charts. Among image classification-specialized CNN and Transformer models, the ConvNeXt model achieved the highest diagnostic performance with an accuracy of 89.4%. When diagnosing the corrosion using the Smith chart, it is possible to perform a non-destructive evaluation using electronic signals. Additionally, by integrating and visualizing signal magnitude and phase information, it is expected to perform an intuitive and noise-robust diagnosis.

Relationship between the Body Fat Mass Measured by Bioelectrical Impedance Analysis(BIA) and Dual Energy X-ray Absorptiometry(DEXA), and by the Indices of Insulin Sensitivity (생체 임피던스 방법과 이중 방사선 흡수법으로 측정한 체지방량과 인슐린감수성 지표와의 연관성)

  • Lim, In Seok;Yun, Ki Wook
    • Clinical and Experimental Pediatrics
    • /
    • v.48 no.8
    • /
    • pp.857-864
    • /
    • 2005
  • Purpose : The objectives of this study was to evaluate the correlations between the indices of insulin sensitivity using fasting glucose and insulin level, and the body fat mass measured by bioelectrical impedance analysis(BIA) and dual energy X-ray absorptiometry(DEXA), and to determine the clinical usefulness of insulin sensitivity indices when obese children were followed up. Methods : In this study, 28 simple obese children and adolescents were included. Anthropometric data including body weight, height, obesity degree(OD), body mass index(BMI), and waist-to-hip ratio were collected and then body fat mass was measured by using BIA and DEXA. For metabolic data, 12 hour fasting serum glucose, insulin and lipid profiles were measured and indices for insulin sensitivity(G/I ratio, $log_{insulin}$, HOMA-IR, $log_{HOMA-IR}$, QUICKI) were calculated. Results : BMI had a higher correlation with insulin sensitivity indices than OD(G/I ratio, -0.463 vs -0.209; $log_{insulin}$, 0.417 vs 0.196; HOMA-IR, 0.301 vs 0.238; $log_{HOMA-IR}$, 0.403 vs 0.198; QUICKI, -0.451 vs -0.224). But OD had a higher correlation with body fat mass measured by BIA and DEXA than BMI(BIA, 0.612 vs 0.316; DEXA, 0.667 vs 0.512). The G/I ratio was correlated with body fat mass in BIA(r=-0.420, P<0.05) and DEXA(r=-0.512, P<0.01), percentage of body fat(percentage of fat) in BIA(r=-0.366, P<0.05) and DEXA(r=-0.449, P<0.01). HOMA-IR was only correlated with body fat mass in DEXA(r=0.341, P<0.05). Conclusion : This study revealed that G/I ratios had a statistically significant correlation with anthropometric obesity indices(OD and BMI) and also had a correlation with both body fat mass and percentage of fat. These results suggest that G/I ratios could be used as useful index when obese children and adolescence are followed up.

Seismic wave propagation through surface basalts - implications for coal seismic surveys (지표 현무암을 통해 전파하는 탄성파의 거동 - 석탄 탄성파탐사에 적용)

  • Sun, Weijia;Zhou, Binzhong;Hatherly, Peter;Fu, Li-Yun
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • Seismic reflection surveying is one of the most widely used and effective techniques for coal seam structure delineation and risk mitigation for underground longwall mining. However, the ability of the method can be compromised by the presence of volcanic cover. This problem arises within parts of the Bowen and Sydney Basins of Australia and seismic surveying can be unsuccessful. As a consequence, such areas are less attractive for coal mining. Techniques to improve the success of seismic surveying over basalt flows are needed. In this paper, we use elastic wave-equation-based forward modelling techniques to investigate the effects and characteristics of seismic wave propagation under different settings involving changes in basalt properties, its thickness, lateral extent, relative position to the shot position and various forms of inhomogeneity. The modelling results suggests that: 1) basalts with high impedance contrasts and multiple flows generate strong multiples and weak reflectors; 2) thin basalts have less effect than thick basalts; 3) partial basalt cover has less effect than full basalt cover; 4) low frequency seismic waves (especially at large offsets) have better penetration through the basalt than high frequency waves; and 5) the deeper the coal seams are below basalts of limited extent, the less influence the basalts will have on the wave propagation. In addition to providing insights into the issues that arise when seismic surveying under basalts, these observations suggest that careful management of seismic noise and the acquisition of long-offset seismic data with low-frequency geophones have the potential to improve the seismic results.

A Study On Design of ZigBee Chip Communication Module for Remote Radiation Measurement (원격 방사선 측정을 위한 ZigBee 원칩형 통신 모듈 설계에 대한 연구)

  • Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.552-558
    • /
    • 2014
  • This paper suggests how to design a ZigBee-chip-based communication module to remotely measure radiation level. The suggested communication module consists of two control processors for the chip as generally required to configure a ZigBee system, and one chip module to configure a ZigBee RF device. The ZigBee-chip-based communication module for remote radiation measurement consists of a wireless communication controller; sensor and high-voltage generator; charger and power supply circuit; wired communication part; and RF circuit and antenna. The wireless communication controller is to control wireless communication for ZigBee and to measure radiation level remotely. The sensor and high-voltage generator generates 500 V in two consecutive series to amplify and filter pulses of radiation detected by G-M Tube. The charger and power supply circuit part is to charge lithium-ion battery and supply power to one-chip processors. The wired communication part serves as a RS-485/422 interface to enable USB interface and wired remote communication for interfacing with PC and debugging. RF circuit and antenna applies an RLC passive component for chip antenna to configure BALUN and antenna impedance matching circuit, allowing wireless communication. After configuring the ZigBee-chip-based communication module, tests were conducted to measure radiation level remotely: data were successfully transmitted in 10-meter and 100-meter distances, measuring radiation level in a remote condition. The communication module allows an environment where radiation level can be remotely measured in an economically beneficial way as it not only consumes less electricity but also costs less. By securing linearity of a radiation measuring device and by minimizing the device itself, it is possible to set up an environment where radiation can be measured in a reliable manner, and radiation level is monitored real-time.

Multi-element Ultrasound Applicator for the Treatment of Cancer in Uterus and Cervix (자궁암 치료용 다채널 초음파 온열치료기)

  • Lee Rena
    • Progress in Medical Physics
    • /
    • v.16 no.1
    • /
    • pp.16-23
    • /
    • 2005
  • The objective of this study was to construct multi-element ultrasound applicators for the treatment of gynecologic cancer with high dose rate brachytherapy. For the treatment of uterus, piezo-ceramic crystal transducer (PZT -5A) with outer diameter of 4 mm, wall thickness of 1.3 mm, and length of 24.5 mm was selected. For the treatment of cervix or vagina, it should be possible to insert the applicator into the vagina. Thus, a cylindrical PZT -8 material with outer diameter of 24.5 mm, wall thickness of 1.3 mm, and length of 15.2 mm was selected. The operating frequencies determined by vector impedance measurement were 3.2 MHz for the PZT 5A cylinder (OD=4 mm) and 1.7 MHz for the PZT -8 cylinder (OD: 24.5 mm). The ratios of generated acoustic output power to applied electric power were 33% and 61% for the tandem type crystal and the cylinder type crystal, respectively. The radiated acoustic pressure fields from both transducers were calculated using a Matlab code and measured in water using hydrophone. There was good agreement between measured and calculated acoustic pressure field distribution. For a tandem type transducer, the calculated acoustic pressure field decreased from 0.023 MPa at 10 mm to 0.010 Mpa at 30 mm, the reduction of 57%. For the cylinder type transducer which will be used for the treatment of vagina showed 78% reduction at 15 mm and 66% at 25 mm as compared to values at 5 mm from the surface. Based on the characteristics of the transducers, this study demonstrated the possibility of using the crystals as a heating source. Finally, a 3-element and 4-element prototype applicators were constructed. The 3-element applicator is 75 mm long and 4 mm thick and will be used for the treatment of uterus. The 4-element applicator is 61 mm long and 24.5 mm thick and will be used for the treatment of vagina. Using these applicators, it is possible to generate enough power to increase temperature to therapeutic level.

  • PDF

A Study on the New Impedance Matching method by using Non-Symmetrical coupled Lines for MIC and MMIC (MIC와 MMIC를 위한 비대칭 결합 선로에 의한 새로운 임피던스 정합 방법에 관한 연구)

  • 강희창;진연강
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.13 no.6
    • /
    • pp.521-528
    • /
    • 1988
  • Into the telecommunications industry, which had been monopolistic, a few advanced countries introduced competition through 70's and 80's. And this trend is going on worldwide. The introduction of competition into the industry is made mainly in the long distance, international and enhanced market. This liberalisation results from the fundamental change of the cost function. Suggesting that the cost comprises of that of the facility sector and that of the operation sector there exists the economies of scale in the facility sector in general. The major ground for the monopolistic industrial structure in the past was the natural monopoly depending on the economies of scale. But the rapid advance of the technology by a large margin. This decrease has resulted in the change of the cost function. That is while there exists the economies of scale in the smaller production scale, the average cost increases beyond a certain scale. This means that the natural monopoly collapsed, and that the competitive structure is more efficient than the monopolistic structure. But, because there exists economies of scale in the smaller scale, the desirable number of players, which could result in efficient industry structure depends on the market size. Such correlation between technological level market size and the degree of regulation is found in the case of U.S.A., Japan and U.K., where deregulation policy of the telecommunications market has already been carried out. In U.S.A., which has the largest market and the highest technological level the degree of regulation is lowest. Also in the order of Japan and U.K. the regulation is severer. Japan and U.K. are likely to liberalize still more, as the technology advances and the market grows. This article is just the beginning of the research, and this hypothesis requires more detailed research.

  • PDF

Implementation of Capacitor and Inductor Applied LCP Substrate for 35-GHz frequency band (35 GHz 대역을 위한 LCP 기판 적용된 커패시터 및 인덕터 구현)

  • Lee, Jiyeon;Ryu, Jongin;Choi, Sehwan;Lee, Jaeyoung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.67-75
    • /
    • 2020
  • In this paper, by applying LCP substrate, the capacitor and inductor are implemented with a variety of value that can be used in 35 GHz circuits. Depending on how to apply it to the circuit, it is required high value by designing the basic structures such as electrode capacitor and spiral inductor. However they are not available in high-frequency domain, because their SRF(Self-Resonant Frequency) is lower than the frequency of 35-GHz. By finding the limit, this paper devised classifying passive devices for the DC and the high-frequency domain. The basic structure is suitable for DC and microstrip λ/8 length stub structure can be used for high-frequency. The open and short stub structure operate as a capacitor and inductor respectively in the frequency of 35 GHz. If their impedance is known, it is possible to extract the value through the impedance-related equation. By producing with the permittivity 2.9 LCP substrate, the basic structure which are available in the DC constituted a library of capacitance of 1.12 to 13.9 pF and inductance of 0.96 to 4.69 nH, measured respectively. The stub structure available in the high-frequency domain were built libraries of capacitance of 0.07 to 2.88 pF and inductance of 0.34 to 1.27 nH, calculated respectively. The measurements have proven how to diversify value, so libraries can be built more variously. It is possible to integrate with the operation circuit of TRM(Transmit-Receive Module) for the frequency 35-GHz, it will be an alternative to the passive devices that can be properly utilized in the circuit.