• Title/Summary/Keyword: 임펠러(impeller)

Search Result 389, Processing Time 0.024 seconds

Design Optimization on 2 Vane Pump of Wastewater Treatment for Efficiency Improvement (효율향상을 위한 폐수처리용 2 Vane 펌프 설계 최적화)

  • KIM, SUNG;MA, SANG-BUM;KIM, JIN-HYUK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.4
    • /
    • pp.277-284
    • /
    • 2021
  • This paper deals with multi-objective optimization using response surface method to improve the hydraulic performances of a 2 vane pump for wastewater treatment. For analyzing the internal flow field in the pump, steady Reynolds-averaged Navier-Stokes equations were solved with the shear stress transport turbulence model as a turbulence closure model. The impeller and volute variables were defined in the shape of the 2 vane pump. The objective functions were set to satisfy the total head at the design flow rate as well as to improve the efficiency. The hydraulic performance of the optimally designed shape was verified by numerical analysis results.

Effect of Microsparged Aeration on Oxygen Transfer Rate and Cell Viability in Mammalian Cell Culture Bioreactor (동물 세포 반응기에서의 초미세 통기법이 산소 전달 속도와 세포 생존율에 미치는 영향)

  • 김정모;장건희;최춘순;김정회
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.4
    • /
    • pp.240-247
    • /
    • 2001
  • The effect of microsparged aeration in mammalian cell bioreactor on the oxygen transfer rate and cell viability was studied. The microspargers with differ- ent micron-sized pores were used to supply oxygen to the medium. The oxygen transfer coefficients (k$_{L}$a) measured in the bioreactor were markedly increased, which is due to the increase of the contacting area between air bubbles and liquid medium when the pore size of microsparger decreases. When the impellers of two different types (square-pitch marine impeller and $45^{\circ}$ pitched flat blade impeller) were used for agitation, the k$_{L}$a values were slightly higher with the marine impeller than with the blade impeller. The detrimental effect of direct gas sparging with microsparger on mammalian cells was investigated in bubble columns with various air flow rates and different pore sized microspargers. The first-order cell death rate constant ($k_{d}$ /7) was shown to be directly proportional to the air flow rate and inversely proportional to the pore size. During the cultivation of hybridoma cells using microsparger with the pore size of $0.57\mu$m in the mammalian cell culture bioreactor, the continuous sparging caused the cell death and suppressed the cell growth. However, cells grew normally and cell viability was maintained above 90% in the logarithmic phase when the air was intermittently sparked in order to maintain the dissolved oxygen level above 20%.

  • PDF

Characteristic Features and Effect of Neo-Hydrofoil Impeller Applied in Sewage Treatment Plants (하수처리 공법별 네오하이드로포일 교반기의 적용 특성 및 효과)

  • Joo, Yoon-Sik;Son, Guntae;Bae, Youngjun;Lee, Seunghwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.2
    • /
    • pp.187-196
    • /
    • 2016
  • In this study, a newly developed agitator with hydrofoil impeller applied to actual biological process in advanced wastewater treatment plant was evaluated. Several series of experiments were conducted in two different wastewater treatment plants where actual problems have been occurred such as the production of scums and sludge settling. For more effective evaluation, computational fluid dynamics (CFD) and measurements of MLSS (Mixed Liquor Suspended Solids) and DO (Dissolved Oxygen) were used with other measuring equipments. After the installation of one unit of vertical hydrofoil agitator in plant A, scum and sludge settling problems were solved and more than seventy percent of operational energy was saved. In case of plant B, there were three cells of each anoxic and anaerobic tanks, and each cell had one unit of submersible horizontal agitator. After the integration of three cells to one cell in each tank, and installation of one vertical hydrofoil agitator per tank, all the problems caused by improper mixing were solved and more than eighty percent of operational energy was found to be saved. Simple change of agitator applied to biological process in wastewater treatment plant was proved to be essential to eliminate scum and sludge settling problems and to save input energy.

Evaluations of Grit Removal Efficiency of Tornado Block-Type Vortex Grit Separator (토네이도 블록형 선회류 침사제거기의 침사제거효율 평가)

  • Kim, Jong-Je;Lee, Bum-Soo;Yeom, Cheol-Min;Lim, Hee-Jae;Jung, Seok-Mo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.3
    • /
    • pp.288-294
    • /
    • 2005
  • This study was conducted to evaluate the grit removal efficiency of tornado block-type vortex grit separator. Vortex grit separator was manufactured for this study, and it was characterized by the impeller and tornado block installed in separator. Impeller was installed to increase water velocity in the separator and tornado block was installed to increase the grit lifting efficiency. Pilot study was also conducted in A sewage treatment plant (STP) in Gyeonggi province from November 2003 to May 2004 (64 days). Major findings are as follows. 1. Impeller was proven to increase water velocity in the grit separator, especially in low flow rate. This influence will increase separation ratio of organics from grits, preventing those organics from sedimentation. 2. Sand (with 0.2~0.3mm size) removal efficiency was over 98 % and 96 %, at the flow rate of $500m^3/day$ and $750m^3/day$ under the condition that impeller rotation velocity kept at 15 rpm. Originally that grit separator was designed to have the capacity of $500m^3/day$. $750m^3/day$ was tried to investigate the performance of this type of grit separator under overload condition. Stable grit removal was still available to the extent of 150% of designed capacity. 3. It took less than 3 minutes for the grit separator to completely lift out 3 kgs of 0.2-0.3 mm sized, settled sand at the bottom to 2,060 mm high above water surface. But it showed the tendency to spend a little more time on lifting the grit as the grit size and the vertical height of the lift increased. 4. During experimental duration in A STP, it was found that the average amount of inlet grit was about 981 g/day (160~1,685 g/day) under $500m^3/day$ of operation condition, but it varied so severely during the experimental duration. After classification of discharged grit according to its size, grit with 0.3-0.42 mm size was found as largest part of output.

Design and Performance Test of 1300RT Centrifugal Compressor for a HFC-134a Turbo-Chiller (HFC-134a용 1300RT급 원심압축기의 설계 및 성능시험)

  • Ko, Kyung-Tae;Choi, Young-Min;Shin, Jeong-Kwan;Kim, Kyung-Hun
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.672-677
    • /
    • 2001
  • This study has been conducted to design the high efficiency centrifugal compressor for a HFC-134a. The 2-stage centrifugal compressor consists of inlet guide vanes, two impellers with splitters, a deswirler, a vaneless diffuser and a volute casing. We have designed the high efficiency centrifugal compressor by applying the repeated design procedure including a meanline design, a 3D geometry generation of 1st and 2nd impellers etc. Also, a fluid dynamic calculation of impellers and deswirler have been conducting using a commercial code STAR-CD.

  • PDF

A Study on Flow Characteristics and Efficiency in Guide Vane of Diffuser Pump Using PIV Measurement (PIV를 이용한 디퓨저펌프 정익에서의 성능과 유동특성에 관한 연구)

  • 김정환;김범석;김진구;함승덕;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.633-640
    • /
    • 2003
  • The present experimental study is focused on the application of multi-point simultaneous measurement by PIV(Particle Image Velocimetry) to guide vane region within diffuser pump. Various different kinds of rotational velocity were selected as experimental condition. Optimized cross correlation Identification to obtain velocity vectors is implemented with direct calculation of correlation coefficients. Fine optical setup concerned with PIV performance is arranged for the accurate PIV measurement of high-speed complex flow. Variable flow pattern are represented quantitatively at the stator region.

Measurement of the Velocity field of Rotor-Stator in a Centrifugal Turbine Pump by Using PIV (PIV를 이용한 터빈펌프의 동${\cdot}$정익 속도장 계측)

  • Im, Yu-Cheong;Seo, Min-Sik;Lee, Young-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.11-18
    • /
    • 1998
  • The present experimental study is focused on the application of multi-point simultaneous measurement by PIV(Particle Image Velocimetry) to rotor-stator region within centrifugal turbine pump. Six different kinds of rpm(120, 500, 1000, 1500, 2000 and 2500) are selected as experimental condition. Optimized cross correlation identification to obtain velocity vectors is implemented by direct calculation of correlation coefficients. Fine optical setup deeply concerned with PIV performance is arranged for accurate PIV measurement of high-speed complex flow. The instantaneous and time-mean velocity distribution and velocity profile are represented quantitatively at the rotor and stator region.

  • PDF

Development of Air Supply System for Fuel Cell Electric Bus (연료전지 버스용 공기공급시스템 개발)

  • Kim, Woo-June;Park, Chang-Ho;Cho, Kyung-Seok;Oh, Chang-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.561-564
    • /
    • 2007
  • FCEV uses electric energy which generated from the reaction between Hydrogen and Oxygen in fuel cell stack as driving force. As fossil fuels are exhausted, fuel cell is regarded as a potent substitute for next generation energy source, and thus, most of car-makers make every efforts to develop fuel cell electric vehicle (FCEV). In addition, fuel cell is also beneficial in aspect of environment, because only clean water is produced during chemical reaction process instead of harmful exhausted gas. Generally, Hydrogen is supplied from high-pressured fuel tank, and air blower (or compressor) supply Oxygen by pressurizing ambient air. Air blower which is driven by high speed motor consumes about $7{\sim}8$ % of energy generated from fuel cell stack. Therefore, the efficiency of an air blower is directly linked with the performance of FCEV. This study will present the development process of an air blower and its consisting parts respectively.

  • PDF

Development of Air Supply System for FCEV Bus (연료전지 버스용 공기공급시스템 개발)

  • Park, Chang-Ho;Cho, Kyung-Seok;Kim, Woo-June;Oh, Chang-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.417-420
    • /
    • 2006
  • FCEV uses electric energy generated from the reaction between Hydrogen and Oxygen in fuel cell stack as driving force. As fossil fuels are exhausted, fuel cell is regarded as a potent substitute for next generation energy source, and thus, most of car-makers make every efforts to develop fuel cell electric vehicle (FCEV). In addition, fuel cell is also beneficial in aspect of environment, because only clean water is produced during chemical reaction process instead of harmful exhausted gas. Generally, Hydrogen is supplied from high-pressured fuel tank, and air blower (or compressor) supplies Oxygen by pressurizing ambient air. Air blower which is driven by high speed motor consumes about $7{\sim}8%$ of energy generated from fuel cell stack. Therefore, the efficiency of an air blower is directly linked with the overall performance of FCEV. This study will present developing process of an air blower and its consisting parts respectively.

  • PDF

Pressure Distributions of a Screw-type Centrifugal Pump Operating in Air-Water Two-Phase Flow (기액 이상류시의 스크류식 원심펌프의 압력분포)

  • Kim, You-Taek;Choi, Min-Seon;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.3 s.12
    • /
    • pp.39-45
    • /
    • 2001
  • It is reported recently that the pump head deterioration near the best efficiency point, from single-phase flow to the choke due to air entrainment became less in a screw-type centrifugal pump than in a general centrifugal pump. Moreover, at a narrow tip clearance, the pump head became partially higher in two-phase flow than that in single-phase flow. However, the internal pressure fluctuations on this pump due to air entrainment have not been studied yet. For that reason, we have examined the influences of void fraction, flow coefficient and impeller tip clearance on pressure fluctuations in the casing. The void fraction became larger, the influence of tip clearance on pressure distribution became less.

  • PDF