Effect of Microsparged Aeration on Oxygen Transfer Rate and Cell Viability in Mammalian Cell Culture Bioreactor

동물 세포 반응기에서의 초미세 통기법이 산소 전달 속도와 세포 생존율에 미치는 영향

  • 김정모 (한국과학기술원 생물과학과) ;
  • 장건희 (삼성정밀화학연구소) ;
  • 최춘순 (광주보건전문대학 식품공학과) ;
  • 김정회 (한국과학기술원 생물과학과)
  • Published : 2001.12.01

Abstract

The effect of microsparged aeration in mammalian cell bioreactor on the oxygen transfer rate and cell viability was studied. The microspargers with differ- ent micron-sized pores were used to supply oxygen to the medium. The oxygen transfer coefficients (k$_{L}$a) measured in the bioreactor were markedly increased, which is due to the increase of the contacting area between air bubbles and liquid medium when the pore size of microsparger decreases. When the impellers of two different types (square-pitch marine impeller and $45^{\circ}$ pitched flat blade impeller) were used for agitation, the k$_{L}$a values were slightly higher with the marine impeller than with the blade impeller. The detrimental effect of direct gas sparging with microsparger on mammalian cells was investigated in bubble columns with various air flow rates and different pore sized microspargers. The first-order cell death rate constant ($k_{d}$ /7) was shown to be directly proportional to the air flow rate and inversely proportional to the pore size. During the cultivation of hybridoma cells using microsparger with the pore size of $0.57\mu$m in the mammalian cell culture bioreactor, the continuous sparging caused the cell death and suppressed the cell growth. However, cells grew normally and cell viability was maintained above 90% in the logarithmic phase when the air was intermittently sparked in order to maintain the dissolved oxygen level above 20%.

본 연구에서는 동물세포 배양장치를 개발키 위한 기초연구로서 초미세 통기법이 산소 전달 속도와 세포의 생존율에 미치는 영향에 대해 알아보았다. 통기 장치로 통기 구멍 크기가 다른 microsparger 를 사용하였을 때, 모형 반응기 내에서 측정한 산소 전달계수(k$_{L}$a)는 microsprager의 통기 구멍 크기가 작아질수록 현저히 증가하였다. 이는 공기 방울들과 매질 사이의 접촉 면적이 증가했기 때문인 것으로 판단된다. 두 가지 다른 형태의 임펠러 (square-pitch marine impeller 와 $45^{\circ}$) pitched flat blade impller) 를 사용하여 교반하였을 때, $k_{L}$ a 값은 marine impeller 를 사용하였을 때 다소 높았다. $100\mu\textrm{m}$ 이하의 통기 구멍을 가진 microsparger 를 사용하여 직접 통기가 세포에 미치는 손상에 대해 알아본 결과, 세포들의 손상 정도는 통기 속도가 증가할수록, 공기방울 크기가 작아질수록 더 커졌다. 2.5 L 용량의 소형 세포 반응기에 $0.5\mu\textrm{m}$ 의 통기 구멍 크기를 가진 micro-sparger를 장치하여 세포를 배양한 결과 , 지속적인 통기시에는 세포의 생존율이 80% 이하로 떨어지고, 정상적인 성장을 하지 못하였다. 그러나 용존 산소 농도가 20% 이하로 떨어졌을 때에만 통기하였을 때 세포는 정상적으로 자랐으며 세포 생존율도 대수기 전반에 걸쳐 90% 이상을 유지하였다.

Keywords

References

  1. Science v.232 Large-scale cell culture in biotechnology Arathoon, W. R.;J. R. Birch
  2. Biotechnol. Bioeng. v.32 Large-scale production of monoclonal antibodies in suspension culture Backer, M. P.;L. S. Metzger;P. L. Slaber;K. L. Nebitt;G. B. Boder
  3. Long-term cultivation of mammalian Cells Beyeler, W.;T. Thaler;R. Clements
  4. Cytotechnol. v.15 Cells and bubbles in sparged bioreactors Chalmers, J. J.
  5. Biotechnol. Prog. v.8 Cell death in the thin films of bursting bubbles Cherry, R. S.;C. T. Hulle
  6. Bioprocess Eng. v.9 Animal cell culture in stirred bioreactors: observations on scale-up Chisti, Y.
  7. Biotechnol. Bioeng. v.35 Effects of stirring and sparging on cultured hybridoma cells Gardner, A. R.;J. L. Gainer;D. J. Kirwan
  8. Biotechnol. Bioeng. v.35 Oxygen transfer rates in a mammalian cell culture bioreactor equipped with a cell-lift impeller Jonson, M.;G. Andre;D. Dhavarie;J. Archambault
  9. Biotechnol. Bioeng. v.43 Interactions between animal cells and gas Bubbles: the influence of serum and pluronic F68 on the physical properties of the bubble surface Jordan, M.;H. Sucker;A. Einsele;F. Widmer;H. M. Eppenberger
  10. Cytotechnol. v.2 Initial culture condition affect the sensitivity of HepG₂cells to excessive mechanical agitation Kim, J. H.;W. S. Hu
  11. Bioprocess Eng. v.8 Oxgen Transfer in a stirred loop fermentor with dilute polymer solutions Kura, S.;H. Nishiumi;Y. Kawase
  12. Biotechnol. Bioeng. v.36 Damage mechanisms of suspended animal cells in agitated bioreactors with and without bubble entrainment Kunas, K. T.;E. T. Papoutsakis
  13. Biotechnol. Bioeng. v.36 Effect of liquid properties and flow on liquid film mass transfer coefficient in silicone membrane oxygenation Lee, E. K.;L. Huang;Y. H. Lee
  14. Bioprocess Eng. v.12 High density VERO cell culture on microcarriers in a cell bioreactor Mendonca, R. Z.;C. A. Pereira
  15. Comprehensive biotechnology v.2 Murry, M. Y.
  16. Trens. Biotechnol. v.9 Fluid-mechanical damage of animal cells in bioreactors Papoutsakis, E. T.
  17. Develop. Biol. Standard. v.60 Very large scale suspension cultures of mammalian cells Pullen, K. F.;M. D. Johnson;A. W. Phillips;G. D. Ball;N. B. Finter
  18. Bio/Technol. v.9 Modular integrated fluidized bed bioreactor technology Reiter, M.;G. Bluml;T. Gaida;N. Zach;F. Unterluggauer;O. Doblhoff-Dier;M. Noe;R. Plail;S. Huss;H. Katinger
  19. Biotechnol. Bioeng. v.55 Effect of hypoosmotic stress on hybridoma cell growth and antibody production Ryu, Joon Soo;G. M. Lee
  20. Fermentation and enzyme technology Wang, D. I. C.;C. L. Cooney;A. L. Demain;P. Dunnill;A. E. Humphrey;M. D. Lilly
  21. Enzyme Microb. Technol. v.17 Evaluation of the killing volume of gas bubbles in sparged animal cell culture bioreactors Wu, Jianyong;M. F. A. Goosen