• Title/Summary/Keyword: 임펠러(impeller)

Search Result 389, Processing Time 0.02 seconds

Effect of impeller geometrical parameter on the performance of a centrifugal (임펠러 형상변수가 원심펌프 성능에 미치는 영향)

  • Kim, Sung;Choi, Young-Seok;Kim, Joon-Hyung;Yoon, Joon-Yong
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1303-1308
    • /
    • 2008
  • This paper presents effects of impeller geometrical parameters on the performance of a centrifugal pump impeller. The effects of meridional parameters and vane plane development parameters on the performance of the impeller were numerically studied using a commercial CFD code and DOE(design of experiments) software. Geometrical parameters in a method of meridional view and vane plane development were selected and defined to generate the 3D impeller shape. The response variables are defined in a total head and efficiency curve with flow rate. The influences of selected design variables on the various objective functions were examined as a result of the calculation using 2k factorial.

  • PDF

Performance Characteristics of Side Channel Type Regenerative Pumps (사이드채널형 재생펌프의 성능 특성에 관한 실험적 연구)

  • Kang Shin-Hyoung;Lim Hyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.3 s.234
    • /
    • pp.306-313
    • /
    • 2005
  • The performance of a regenerative pump is affected by many parameters, especially blade shape of impeller, leakage flow in the clearance and head losses at the inlet & outlet. An impeller with J-shape blade was designed and 5 times scale up model was tested at similarity conditions to evaluate the performance. Performance variations with clearance change were executed. The amounts of leakage flow through the clearance were estimated using the one-dimensional leakage flow models and analysis. Main leakage flow is generated through the gap between the impeller and casing. The inlet & outlet head losses were also estimated. Such corrections are very important to evaluate the final performance of the impeller and pump. Cavitation test was also performed at 1,200 rpm. NPSH of the regenerative pump was obtained and growth of cavity within blades was visualized.

Study on the Industrial Agitator's Impeller Shape Analysis Using CFD and Reverse Engineering (CFD와 역설계를 이용한 교반기 Impeller 형상 해석에 관한 연구)

  • Kim, D.K.;Bae, S.T.;Park, J.H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.5
    • /
    • pp.359-364
    • /
    • 2006
  • Industrial Agitators are used in various industrial fields where they are necessary to intimately mix two reactants in a short period of time. However, despite their widespread use, complex unsteady flow characteristics of industrial mixers are not systematically investigated. The present study aims for clarify unsteady flow characteristics induced by various impellers in agitator's tank. Impellers are Pitched blade turbine(PBT) types, Screw type and Rushton turbine type(RUT). In this study is numerical analysis of the Industrial agitator's Impeller types. The rotating speed of impellers fixed about 100RPM. Numerical analysis results show that differential flow characteristics of each type Impeller and Rushton turbine type(RUT) is suitable for mixing powder.

The Optimum Design of Flow Characteristics in Fermentation (발효조 내의 유동특성 최적화 설계)

  • 박상규;김기성;양희천
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.117-121
    • /
    • 2001
  • A numerical simulation was conducted to investigate the effect of height position of Rushton type Impeller in the fermentation. The computational method was based on the CFX code. The simulation was performed for 3 height differences(25, 30, 35mm) between Rushton type impeller and bottom of fermentation. The instantaneous flow fields showed that the bulk flow consisted of large scale vortices. However the main flow results showed that the formation of ring vortices above and below the impeller depended on the height of the impeller.

  • PDF

A Study of Impeller's Design and CFD Analysis for Axial Flow Blood Pump (축류형 혈액펌프 개발을 위한 임펠러의 설계 및 해석에 대한 연구)

  • 임상필;김동욱
    • Proceedings of the KAIS Fall Conference
    • /
    • 2002.11a
    • /
    • pp.193-196
    • /
    • 2002
  • 완전인공심장은 크게 정상류형과 박동류형이 있다. 정상류형 인공심장중 축류형 혈액펌프는 기구가 간단하고 비용적형이기 때문에 소형화가 가능한 장점이 있지만, 가동중 발생하는 난류로 인해 용혈현상이 따른다는 단점이 있다. 이 용혈의 형성과정은 실제와 가까운 모의실험을 하지 않고서는 알 수가 없다. 따라서 본 연구에서는 모의 실험단계를 거치지 않고 유한요소해석에 의한 난류평가를 통하여 용혈지수가 가장 낮은 임펠러의 형상을 연구하였다. 난류해석 결과, vane매수가 적을 경우 상대적으로 용혈지수가 낮게 나타나는 것을 알 수 있었으나 vane매수가 적을 경우에는 일정한 출구유량을 얻기 위해 임펠러의 고속회전 이 필요하며 이에 따른 난류에너지가 발생, 높은 용혈지수가 예상되므로 본 논문에서는 vane매수 4매-6매 중 6000-7000rpm의 회전속도사이의 조건으로 설계된 임펠러의 모델이 적당한 것으로 예측할 수 있었다.

A Study on Flow Analysis of Centrifugal Pump for Exhaust Heat Recovery in Residential Fuel Cell Using A Commercial CFD code (상용 CFD 코드를 이용한 가정용 연료전지의 배열회수용 원심펌프 유동해석에 관한 연구)

  • Hwang, Seung-Sik;Jo, Ji-Hoon;Jin, Kyoung-Min;Lee, Song-Kyu;Shin, Dong-Hoon;Chung, Tae-Yong;Park, Chang-Kwon
    • Journal of Energy Engineering
    • /
    • v.20 no.3
    • /
    • pp.224-230
    • /
    • 2011
  • For developing high performance fuel cell, peripheral devices and key components have to be studied in priority. In this study, centrifugal pump was studied for heat recovery. For PEM fuel cell system, a four-impeller centrifugal pump was designed, tested and compared with result of commercial product (IWAKI). In addition, effects of number of impeller were analyzed by CFD. The experiment and analysis were progressed in the same conditions. The results showed the quantitative difference under 30% between the numerical and the experimental pressure difference and mass flow rate.

Simulant Gel Propellant Characteristics depending on Mixing Method (제작방법에 따른 모사 젤 추진제의 특성 연구)

  • Kim, Jae-Woo;Jun, Doo-Sung;Shin, Woong-Sup;Lee, Hyo-Mi;Moon, Hee-Jang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.467-470
    • /
    • 2011
  • In this study, two different kind of impeller, commercial hand blender and manual type were used to investigate the most effective mixing method for simulant gel propellant. Ionized Water, Carbopol 941 and NaOH were used to produce the simulant gel for temperature of $25^{\circ}C$ and $50^{\circ}C$. The amount of bubbles produced during mixing of simulant gel at $50^{\circ}C$ were higher than that of simulant gel at $25^{\circ}C$. After 24 hours, bubbles of simulant gel made at $50^{\circ}C$ disappeared rapidly with respect to the bubbles of gel made at $25^{\circ}C$. Bubbles from blender did show notable amount even after 24 hours. Among mixing type, it was found that the pitched paddle impeller was the best candidate for the production of simulant gel.

  • PDF

Power Input of Pitched and Double-Stage Paddle Impeller in a Agitated Vessel (교반조에서 경사 및 2단 Impeller의 교반소요동력에 관한 연구)

  • Lee, Young-Sei;Kim, Moon-Kap;Kim, Jong-Shik
    • Applied Chemistry for Engineering
    • /
    • v.7 no.1
    • /
    • pp.18-25
    • /
    • 1996
  • Power input in stirred vessel is especially important in the design of mixers, as well as the evaluation of mixing processes. A type of baffles in mechanically agitated vessels and power employed are major factors that determine the stirring efficiency in a large scale, multi-step processes. In the present study, power input in the totally baffled agitated vesseles was compared systematically in connection with several previous studies and adequate power input correlation was found to be : $Np_{(pitch)}=({\theta}/90^{\circ})Np_{(90^{\circ})}$ Power number correlation was dependent upon the distance of among the impeller in the agitated vesseles, as follows : $$Np=7.09(n_p)^{0.7}(\frac{b_(double)}{d})(\frac{H}{D})^{0.18}$$, $${n_p}^{0.7}(\frac{b_{(double)}}d)$$<2 $$Np=8.73\{(n_p)^{0.7}(\frac{b_{(double)}}{d})\}^{0.7}(\frac{H}{D})^{0.18}$$, $${n_p}^{0.7}(\frac{b_{(double)}}d)$$>2.

  • PDF

Rotordynamic Design of a LOX Pump for a 75 Ton Class Liquid Rocket Engine (75톤급 액체로켓 엔진용 산화제 펌프 회전체 동역학 설계)

  • Jeon, Seong-Min;Kwak, Hyun-D.;Yoon, Suk-Hwan;Kim, Jin-Han
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.205-210
    • /
    • 2007
  • A LOX pump rotordynamic design was performed for a 75 ton thrust liquid rocket engine. Axial positions of an inducer, an impeller and bearings on a shaft are decided on the basis of the experience achieved by previously developed turbopump which has the similar layout. The result of pump hydraulic design was reflected in the present study to decide axial length of the inducer and impeller. A distance from the rear bearing to the impeller was considered as a design parameter for load distribution of the bearings. Asynchronous eigenvalue analysis was performed as a function of rotating speeds and bearing stiffness to investigate critical speed of the LOX pump. From the numerical analysis, it is found that the LOX pump with the proper bearing loads safely operates as a sub-critical rotor of which critical speed is high enough compared to the operating speed 11,000 rpm.

  • PDF

An Experimental Study for the Performance Analysis of a Vertical-type Wind Power Generation System with a Cross-flow Wind Turbine (횡류형 터빈을 적용한 수직축 풍력발전시스템의 성능평가를 위한 실험 연구)

  • Cho, Hyun-Sung;Chung, Kwang-Seop;Kim, Chul-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.3
    • /
    • pp.1272-1278
    • /
    • 2014
  • In this experimental study for the current growing offshore wind, a wind tunnel test was conducted to examine the performance of the vertical-type cross-flow wind turbine power generation system. Due to the limited size of the test section of the wind tunnel, the inlet guide vane of the original wind power generation was scaled down to about 1/5 and the turbine impeller diameter was also reduced to 1/2 of the prototype impeller. The number of the impeller blade is another important parameter to the output power of the wind power generation system and the number was varied 8 and 16. From the analysis of the experimental result, the output brake power of the model wind turbine was measured as 278watts with the 16-blade at 12 m/s of the rated wind speed and the rated brake power of the prototype wind turbine is calculated to 3.9kW at the rated operating condition.