The brain-machine interface(BMI) is a next-generation interface that controls the device by decoding brain waves(also called Electroencephalogram, EEG), EEG is a electrical signal of nerve cell generated when the BMI user thinks of a command. The brain-machine interface can be applied to various smart devices, but complex computational process is required to decode the brain wave signal. Therefore, it is difficult to implement a brain-machine interface in an embedded system implemented in the form of an edge device. In this study, we proposed a new type of brain-machine interface system using IoT technology that only measures EEG at the edge device and stores and analyzes EEG data in the cloud computing. This system successfully performed quantitative EEG analysis for the brain-machine interface, and the whole data transmission time also showed a capable level of real-time processing.
Journal of the Korea Institute of Information Security & Cryptology
/
v.33
no.3
/
pp.459-469
/
2023
The number of IoT devices is explosively increasing due to the development of embedded equipment and computer networks. As a result, cyber threats to IoT are increasing, and currently, malicious codes are being distributed and infected to IoT devices and exploited for DDoS. Currently, IoT devices that are the target of such an attack have various installation environments and have limited resources. In addition, IoT devices have a characteristic that once set up, the owner does not care about management. Because of this, IoT devices are becoming a blind spot for management that is easily infected with malicious codes. Because of these difficulties, the threat of malicious codes always exists in IoT devices, and when they are infected, responses are not properly made. In this paper, we will design an malware detection system for IoT in consideration of the characteristics of the IoT environment and present detection rules suitable for use in the system. Using this system, it will be possible to construct an IoT malware detection system inexpensively and efficiently without changing the structure of IoT devices that are already installed and exposed to cyber threats.
Journal of the Korea Society of Computer and Information
/
v.18
no.10
/
pp.1-12
/
2013
This paper explores design space of many-core processors for a fire feature extraction algorithm. This paper evaluates the impact of varying the number of cores and memory sizes for the many-core processor and identifies an optimal many-core processor in terms of performance, energy efficiency, and area efficiency. In this study, we utilized 90 samples with dimensions of $256{\times}256$ (60 samples containing fire and 30 samples containing non-fire) for experiments. Experimental results using six different many-core architectures (PEs=16, 64, 256, 1,024, 4,096, and 16,384) and the feature extraction algorithm of fire indicate that the highest area efficiency and energy efficiency are achieved at PEs=1,024 and 4,096, respectively, for all fire/non-fire containing movies. In addition, all the six many-core processors satisfy the real-time requirement of 30 frames-per-second (30 fps) for the algorithm.
We present a trade-off technique for fast but qualitative planar shape deformation using a layered mesh. We construct a layered mesh that is embedding a planar input shape; the upper-layer is denoted as a control mesh and the other lower-layer as a shape mesh that is defined by mean value coordinates relative to the control mesh. First, we try to preserve some shape properties including user constraints for the control mesh by means of a known existing nonlinear least square optimization technique, which produces deformed positions of the control mesh vertices. Then, we compute the deformed positions of the shape mesh vertices indirectly from the deformed control mesh by means of simple coordinates computation. The control mesh consists of a small number of vertices while the shape layer contains relatively a large number of vertices in order to embed the input shape as tightly as possible. Since the time-consuming optimization technique is applied only to the control mesh, the overall execution is extremely fast; however, the quality of deformation is sacrificed due to the sacrificed quality of the control mesh and its relativity to the shape mesh. In order to change the deformation behavior and consequently to compensate the quality sacrifice, we present a method to control the deformation stiffness by incorporating the orientation into the user constraints. According to our experiments, the proposed technique produces a planar shape deformation fast enough for real-time applications on limited embedded systems such as cell phones and tablet PCs.
Journal of the Korea Institute of Information and Communication Engineering
/
v.12
no.11
/
pp.2105-2110
/
2008
Embedding the compact wearable units to monitor the health status of a person has been analysed as a convenient solution for the home health care. This paper presents a method to detect fall from the other activities of daily living and also to classify those activities. This kind of ambulatory monitoring of the elderly and people with limited mobility can not only provide their general health status but also alarms whenever an emergency such as fall or gait has been occurred and a help is needed. A timely assistance in such a situation can reduce the loss of life. This work shows a detailed analysis of the data received from a chest worn sensor unit embedding a 3-axis accelerometer and depicts which features are important for the classification of human activities. How to arrange and reduce the features to a new feature set so that it can be classified using a simple classifier and also improving the classification resolution. Principal component analysis (PCA) has been used for modifying the feature set and afterwards for reducing the size of the same. Finally a Neural network classifier has been used to analyse the classification accuracies. The accuracy for detection of fall events was found to be 86%. The overall accuracy for the classification of Activities or daily living (ADL) and fall was around 94%.
Journal of the Korea Society of Computer and Information
/
v.15
no.1
/
pp.1-12
/
2010
Recently, processor performance has been improved dramatically. Unfortunately, as the process technology scales down, energy consumption in a processor increases significantly whereas the processor performance continues to improve. Moreover, peak temperature in the processor increases dramatically due to the increased power density, resulting in serious thermal problem. For this reason, performance, energy consumption and thermal problem should be considered together when designing up-to-date processors. This paper proposes three modified filter cache schemes to alleviate the thermal problem in the filter cache, which is one of the most energy-efficient design techniques in the hierarchical memory systems : Bypass Filter Cache (BFC), Duplicated Filter Cache (DFC) and Partitioned Filter Cache (PFC). BFC scheme enables the direct access to the L1 cache when the temperature on the filter cache exceeds the threshold, leading to reduced temperature on the filter cache. DFC scheme lowers temperature on the filter cache by appending an additional filter cache to the existing filter cache. The filter cache for PFC scheme is composed of two half-size filter caches to lower the temperature on the filter cache by reducing the access frequency. According to our simulations using Wattch and Hotspot, the proposed partitioned filter cache shows the lowest peak temperature on the filter cache, leading to higher reliability in the processor.
It is hard to predict when and where a fall accident will happen. Also, if rapid follow-up measures on it are not performed, a fall accident leads to a threat of life, so studies that can automatically detect a fall accident have become necessary. Among automatic fall-accident detection techniques, a fall detection scheme using an IMU (inertial measurement unit) sensor attached to a wrist is difficult to detect a fall accident due to its movement, but it is recognized as a technique that is easy to wear and has excellent accessibility. To overcome the difficulty in obtaining fall data, this study proposes an algorithm that efficiently learns less data through machine learning such as KNN (k-nearest neighbors) and SVM (support vector machine). In addition, to improve the performance of these mathematical classifiers, this study utilized feature data aquired in the frequency space. The proposed algorithm analyzed the effect by diversifying the parameters of the model and the parameters of the frequency feature extractor through experiments using standard datasets. The proposed algorithm could adequately cope with a realistic problem that fall data are difficult to obtain. Because it is lighter than other classifiers, this algorithm was also easy to implement in small embedded systems where SIMD (single instruction multiple data) processing devices were difficult to mount.
Journal of the Korea Society of Computer and Information
/
v.26
no.12
/
pp.151-158
/
2021
Internet of Things (IoT) technology, which provides services by connecting various objects in the real world and objects in the virtual world based on the Internet, is emerging as a technology that enables a hyper-connected society in the era of the 4th industrial revolution. Since IoT technology is a convergence technology that encompasses devices, networks, platforms, and services, various studies are being conducted. Among these studies, studies on measures that can measure service quality provided by IoT software are still insufficient. IoT software has hardware parts of the Internet of Things, technologies based on them, features of embedded software, and network features. These features are used as elements defining IoT software quality measurement metrics. However, these features are considered in the metrics related to IoT software quality measurement so far. Therefore, this paper presents a metric for reusability measurement among various quality factors of IoT software in consideration of these factors. In particular, since IoT software is used through IoT devices, services in IoT software must be designed to be changed, replaced, or expanded, and metrics that can measure this are very necessary. In this paper, we propose three metrics: changeability, replaceability, and scalability that can measure and evaluate the reusability of IoT software services were presented, and the metrics presented through case studies were verified. It is expected that the service quality verification of IoT software will be carried out through the metrics presented in this paper, thereby contributing to the improvement of users' service satisfaction.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.18
no.4
/
pp.58-70
/
2019
In the case of a pedestrian traffic accident, it has a large-scale danger directly connected by a fatal accident at the time of the accident. The domestic ITS is not used for intelligent risk classification because it is used only for collecting traffic information despite of the construction of good quality traffic infrastructure. The CNN based pedestrian detection classification model, which is a major component of the proposed system, is implemented on an embedded system assuming that it is installed and operated in a restricted environment. A new model was created by improving YOLO's artificial neural network, and the real-time detection speed result of average accuracy 86.29% and 21.1 fps was shown with 20,000 iterative learning. And we constructed a protocol interworking scenario and implementation of a system that can connect with the ITS. If a pedestrian accident prevention system connected with ITS will be implemented through this study, it will help to reduce the cost of constructing a new infrastructure and reduce the incidence of traffic accidents for pedestrians, and we can also reduce the cost for system monitoring.
Journal of the Korea Society of Computer and Information
/
v.28
no.10
/
pp.1-8
/
2023
If there is a defect in the wheel bearing, which is a major part of the car, it can cause problems such as traffic accidents. In order to solve this problem, big data is collected and monitoring is conducted to provide early information on the presence or absence of wheel bearing failure and type of failure through predictive diagnosis and management technology. System development is needed. In this paper, to implement such an intelligent wheel hub bearing maintenance system, we develop an embedded system equipped with sensors for monitoring reliability and soundness and algorithms for predictive diagnosis. The algorithm used acquires vibration signals from acceleration sensors installed in wheel bearings and can predict and diagnose failures through big data technology through signal processing techniques, fault frequency analysis, and health characteristic parameter definition. The implemented algorithm applies a stable signal extraction algorithm that can minimize vibration frequency components and maximize vibration components occurring in wheel bearings. In noise removal using a filter, an artificial intelligence-based soundness extraction algorithm is applied, and FFT is applied. The fault frequency was analyzed and the fault was diagnosed by extracting fault characteristic factors. The performance target of this system was over 12,800 ODR, and the target was met through test results.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.