• Title/Summary/Keyword: 임무모델

Search Result 325, Processing Time 0.027 seconds

A Numerical Analysis on Transient Fuel Temperatures in a Military Aircraft with Additional Fuel Supplies and Return (추가연료 공급,회송량에 따른 항공기내 연료온도 변화에 대한 수치해석적 연구)

  • Kim,Yeong-Jun;Kim,Chang-Nyeong;Kim,Cheol-In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.73-84
    • /
    • 2003
  • A transient analysis on fuel temperatures in an aircraft was studied using the finite difference method. Numerical calculation was performed by an explicit method of modified Dufort-Frankel scheme. Among various missions, close air support mission was considered with 20% hot day ambient condition in subsonic region. The aircraft was assumed to be in turbulent flow. The fuel system model with additional fuel supplies and return concept was considered. As a result of this analysis, the fuel tank temperatures have increased with the increase of the additional fuel supplies. In contrast to tank temperatures, the fuel temperature at the engine inlet has decreased with the increase of additional fuel supplies except in some in-flight phases having high engine fuel flow. From this analysis, the fuel system with the additional fuel supplies and return concept has been shown to be an effective method to decrease the engine inlet fuel temperature. Also, it has been shown that fuel flow rate through fuel/oil heat exchanger is a key factor influencing fuel temperature.

A Development of 3D Penetration Analysis Program for Survivability Analysis of Combat System : Focused on Tank Model (전투 시스템 생존성 분석을 위한 3차원 관통 해석 프로그램 개발 : 전차 모델을 대상으로)

  • Hwang, Hun-Gyu;Lee, Jae-Woong;Lee, Jang-Se;Park, Jong-Sou
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.244-250
    • /
    • 2015
  • Survivability is avoidance and tolerance ability of combat systems for accomplishing mission in battle field. Therefore, the combat system has to protect or minimize any damage from threats. For this reason, many modeling and simulation based studies which analyze vulnerability of the combat system by threats, are in progress to improve survivability of the combat system. In this paper, we developed a 3D penetration analysis program for survivability analysis of combat system. To do this, we applied the penetration analysis equation to threat and protection performance of tank. Also we implemented simple tank models based on 3D CAD, and tested the developed program using the implemented tank models. As a result, we verified the developed program that is possible to analyze penetration by threat and protection performance of tank and to visualize its result, based on scenarios.

Development and Application of 3-Dimensional Shielding Analysis Program to Analyze Total Ionizing Dose Level depending on the Satellite Structure Model (위성구조모델에 따른 방사선 총 이온화 조사량 예측을 위한 3차원 차폐두께 분석 프로그램의 개발 및 응용)

  • Cho, Young-Jun;Lee, Chang-Ho;Lee, Choon-Woo;Hwang, Do-Soon
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.68-75
    • /
    • 2008
  • Space radiation environments depend on satellite mission orbit, period, and date, and it can be predicted by simulation. Total Ionizing Dose(TID) can be predicted by Dose-depth Curve which only inform the dose level depending on the shielding thickness. So detail effective shielding analysis considering real structure is necessary to predict part level TID. For this purpose, program is developed to calculate shielding thickness distribution by structure modeling and ray trace from certain point in the structure. Finally TID at certain point in the 3-dimensional structure can be calculated by integration of shielding distribution result and dose-depth curve data. Using this program, TID is analyzed at part level certain point by modeling of equipment box structure in the satellite.

  • PDF

Analysis and Experiment on the Tape Spring Hinges for CubeSat Missions (큐브위성 임무를 위한 테이프 스프링 힌지의 비선형 거동 분석 및 실험)

  • Yoo, JeongUk;Im, Byeong-Uk;Shin, SangJoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.10
    • /
    • pp.712-719
    • /
    • 2019
  • This paper explores an implementation of finite element analysis and experiment in the design process of a tape spring hinge used for various CubeSat missions. Tape spring hinges consist of short-length hardened-steel strips with one-sided curvature, and thus the behavior is subject to large deformation with unpredicted non-linearity. Precise dimensions of a commercial tape spring are traced by the use of high-resolution digital camera, and thin-shell FEM analysis is conducted using ABAQUS program. Based on the rotation-moment analysis suggested in previous studies, parametric analysis is conducted by adjusting the contributing factors such as strip thickness and the subtended angle of the cross section. Finally the behaviors are investigated by both analytical and non-linear finite element methods, and the results are compared with the simple measurements. Further studies suggest a possible application in dynamic characteristics of hinges during CubeSat operations.

A Study on How to Extend The Inspection Period for The One-Shot System (One-Shot System에 대한 점검주기 연장 방안 연구)

  • Kim, Jong-jin;Song, Jeong-hun;Han, Jung-won;Lee, Chang-kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.113-118
    • /
    • 2021
  • The guided weapon system should ensure economical operation and user safety. In particular, in the case of guided weapon systems developed in the form of a guaranteed bomb, the standards for maintaining reliability considering the long-term storage environment are presented during the development stage, and an optimized inspection cycle is required to maintain this. This study calculated the reliability through a trend test, fitness test, and distribution analysis using a mathematical model based on the maintenance status and shooting results during the inspection period for OO missiles currently in operation for a long time in the military. Through this, it was applied to the inspection period model (Martinez) set during the development stage to determine if the improved inspection period can be utilized. Finally, by synthesizing the data from these studies, a policy management plan was developed according to the extension of the inspection period. The One-Shot system was operated at the inspection period set when it was developed. The study analyzed the actual failure and maintenance data to reset the efficient inspection period.

Preliminary Conceptual Design of a Multicopter Type eVTOL using Reverse Engineering Techniques for Urban Air Mobility (도심항공 모빌리티(UAM)를 위한 역설계 기법을 사용한 멀티콥터형 eVTOL의 기본 개념설계)

  • Choi, Won-Seok;Yi, Dong-Kyu;Hwang, Ho-Yon
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.1
    • /
    • pp.29-39
    • /
    • 2021
  • As a means of solving traffic congestion in the downtown of large city, the interest in urban air mobility (UAM) using electric vertical take-off landing personal aerial vehicle (eVTOL PAV) is increasing. eVTOL configurations that will be used for UAM are classified by lift-and-cruise, tilt rotors, tilt-wings, tilted-ducted fans, multicopters, depending on propulsion types. This study tries to perform preliminary conceptual design for a given mission profile using reverse engineering techniques by taking the multicopter type Airbus's CityAirbus as a basic model. Wetted area, lift to drag ratio, drag coefficients were calculated using the OpenVSP which is an aerodynamic analysis software. The power required for each mission section of CityAirbus were calculated, and the corresponding battery and motor were selected. Also, total weight was predicted by estimating component weights of eVTOL.

Development of CanSat System for Vehicle Tracking based on Jetson Nano (젯슨 나노 기반의 차량 추적 캔위성 시스템 개발)

  • Lee, Younggun;Lee, Sanghyun;You, Seunghoon;Lee, Sangku
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.556-558
    • /
    • 2022
  • This paper proposes a CanSat system with a vehicle tracking function based on Jetson Nano, a high-performance small computer capable of operating artificial intelligence algorithms. The CanSat system consists of a CanSat and a ground station. The CanSat falls in the atmosphere and transmits the data obtained through the installed sensors to the ground station using wireless communication. The existing CanSat is limited to the mission of simply transmitting the collected information to the ground station, and there is a limit to efficiently performing the mission due to the limited fall time and bandwidth limitation of wireless communication. The Jetson Nano based CanSat proposed in this paper uses a pre-trained neural network model to detect the location of a vehicle in each image taken from the air in real time, and then uses a 2-axis motor to move the camera to track the vehicle.

  • PDF

A Study on the Operational Planning Assist System for Ground Forces (지상군 작전계획 수립 보조 시스템 설계 연구)

  • Ikhyun Kim;Sunju Lee
    • Journal of The Korean Institute of Defense Technology
    • /
    • v.5 no.1
    • /
    • pp.7-18
    • /
    • 2023
  • The military leader makes an operation plan to accomplish combat missions. The current doctrine for an operation planning requires the use of simple and clear procedures and methods that can be carried out with human effort under adverse conditions in the field. The work in the process of an operation planning can be said to be a series of decision-making, and the criteria for decision-making generally apply mission variables. However, detailed standards are not fixed as doctrine, but are creatively established and applied. However, for AI-based decision-making, it is necessary to formalize the criteria and the format used. This paper first aims to standardize various criteria and forms to present a method that can be used in a semi-automated assist system, and to seek a plan to artificialize it. To this end, mathematical models and decision-making methods established in the field of operations research were applied to improve efficiency.

  • PDF

SPENVIS를 이용한 우주환경 영향 시뮬레이션

  • 이주희;최기혁;김종우;서석배;임현수
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.93-93
    • /
    • 2003
  • 우주환경은 궤도상의 우주비행체 임무에 다양한 종류의 문제를 발생시킬 수 있으며, 이러한 우주환경 인자로는 방사선대, 태양으로부터 날아오는 고에너지 입자, 우주선(cosmic rays), 플라즈마(plasmas), 미세 우주 파편 등 다양하게 존재한다. 따라서 인공위성을 비롯한 우주비행체의 설계 시 우주환경에 대한 영향을 사전에 예측하고 이를 우주비행체 개발에 반영하고 있다. European Spare Research & Technology Center(ESTEC)는 1998년 European Space Agency(ESA)의 지원을 받아 Space Environment Information System(SPENVIS) 프로젝트를 시작하였다. SPENVIS는 인공위성을 비롯한 우주비행체의 우주환경에 대한 영향을 연구할 수 있는 인터넷 기반 시뮬레이션 프로그램으로서 각종 우주환경 모델을 통해 사용자가 파라메타(parameter) 값을 입력하고 그래픽과 텍스트로 결과를 알아볼 수 있다. SPENVIS 시스템은 인터넷으로 사용자 등록을 통해 이용 가능하며, 시스템의 지속적인 개선 및 확장을 통해 신뢰도를 높여가고 있다. 본 시뮬레이션 연구수행을 통하여 SPENVIS의 우주환경 영향 연구에 향후 활용 가능성을 알아보고자 한다.

  • PDF

Verification of Reverse specification for Real-Time System in Abstract Timed Machine (추상 시간 기계를 사용한 실시간 시스템의 역명세 검증)

  • 박지연;노경주;이문근
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.489-491
    • /
    • 2000
  • 본 논문은 ATM(Abstract Timed Machine)으로 명세된 실시간 시스템을 검증하기 위한 방법을 기술한다. ATM은 임무 위급 시스템인 실시간 시스템을 명세, 분석, 검증하기 위한 정형기법이다. ATM은 모드와 전이, 포트로 구성된다. 다른 정형기법과 비교하여 ATM은 소프트웨어의 순환공학 과정에서 사용하기 위해 설계되었다. 역공학 과정에서 ATM은 계산 논리 뿐만 아니라 실시간 시스템의 실제 소스코드에 있는 설계나 환경정보를 표현할 수 있다. 이러한 목적을 위해 ATM은 다양한 모드를 사용한다. ATM을 사용한 실시간 시스템의 검증은 도달성 그래프를 생성함으로써 수행한다. 도달성 그래프는 상태와 시간을 추상화되고 압축된 형태로 표현할 수 있으며 그 결과 시간 속성을 지닌 상태 공간을 감소시킬 수 있다. 또한 시스템의 교착상태를 쉽게 발견할 수 있다. 본 논문은 ATM과 실행 모델, 도달성 그래프, 검증을 위한 속성 등을 기술하며 이들을 다른 정형 기법들과 예제를 통하여 비교한다.

  • PDF