• Title/Summary/Keyword: 임계 열유속

Search Result 103, Processing Time 0.028 seconds

Evaporation Heat Transfer Characteristics of Carbon Dioxide in a Diameter Tube of 4.57mm (내경 4.57mm 관내 CO2의 증발 열전달 특성)

  • Son, Chang-Hyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.3
    • /
    • pp.574-579
    • /
    • 2008
  • The evaporation heat transfer coefficient of $CO_2$ (R-744) in a horizontal tube was investigated experimentally. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and evaporator (test section). The test section consists of a smooth, horizontal stainless steel tube of inner diameter of 4.57mm. The experiments were conducted at mass flux of 400 to $900kg/m^2s$, saturation temperature of 5 to $20^{\circ}C$, and heat flux of 10 to $40kW/m^2$. The test results showed the heat transfer of $CO_2$ has a greater effect on nucleate boiling more than convective boiling. Mass flux of $CO_2$ does not affect nucleate boiling too much. In comparison with test results and existing correlations, All of the existing correlations for the heat transfer coefficient underestimated the experimental data. However Jung et al.'s correlation showed a good agreement with the experimental data. Therefore, it is necessary to develope accurate predictions determining the evaporation heat transfer coefficient of $CO_2$ in horizontal tubes.

Flow and smoke behavior of a longitudinal ventilation tunnel with various velocities using computational fluid dynamics (팬의 운전조건에 따른 종류식환기터널 내의 연기거동에 관한 전산유체역학연구)

  • Lee, J.H.;Kwon, Y.J.;Kim, D.E.
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.1
    • /
    • pp.105-115
    • /
    • 2014
  • A numerical analysis on the smoke behavior and evacuee safety has been performed with computational fluid dynamics. The purpose of this study is to build computational processes for an evacuation and prevention of a fire disaster of a 3 km-length tunnel in Korea. To save computational cost, 1.5 km of the tunnel that can include a few cross-passing tunnels is considered. We are going to assess the fire safety in a road tunnel according to the smoke level, which consists of the smoke density and the height from the floor. The smoke density is obtained in detail from three-dimensional unsteady CFD analysis. To obtain proper temperature distributions on the tunnel wall, one-dimensional conduction equation is considered instead of an adiabatic wall boundary or a constant heat flux. The tunnel considered in this study equips the cross passing tunnels for evacuees every 250 m. The distance is critical in both safety and economy. The more cross passing tunnels, the more safe but the more expensive. Three different jet fan operations can be considered in this study; under- and over-critical velocities for normal traffic condition and 0-velocoty operation for the traffic congestion. The SE (smoke environment) level maps show a smoke environment and an evacuating behavior every moment.

A Study on the Ignition Delay Effect by Flame-Resistance Paint Treatment (방염 처리에 따른 화재지연 효과 연구)

  • Oh, Kyu-Hyung;Kim, Hwang-Jin;Lee, Sung-Eun
    • Fire Science and Engineering
    • /
    • v.23 no.2
    • /
    • pp.111-116
    • /
    • 2009
  • 17 kinds of fire resistant paint which are currently used were painted on the MDF(middle density fiber board), which suitable to the regulation of Fire Service Act. And we investigate a ignition delay effect under a exposure condition of radiative heat of fire. Radiative heat flux was controlled from $10kW/m^2$ to $30kW/m^2$ using the cone heater. Ignition time, ignition type and surface temperature of the sample were measured. Based on the experimental result, critical heat flux of the fire resistant paint treated sample was $10kW/m^2$ and there were no ignition delay effect above the $30kW/m^2$. And it was found that it will be difficult to expect the fire resistant effect above $400^{\circ}C$ of sample surface temperature.

An Investigation of Quantitative Risk Assessment Methods for the Thermal Failure in Targets using Fire Modeling (화재모델링을 이용한 목표 대상물의 열적 손상에 대한 정량적 위험성 평가방법의 고찰)

  • Yang, Ho-Dong;Han, Ho-Sik;Hwang, Cheol-Hong;Kim, Sung-Chan
    • Fire Science and Engineering
    • /
    • v.30 no.5
    • /
    • pp.116-123
    • /
    • 2016
  • The quantitative risk assessment methods for thermal failure in targets were studied using fire modeling. To this end, Fire Dynamics Simulator (FDS), as a representative fire model, was used and the probabilities related to thermal damage to an electrical cable were evaluated according to the change in fire area inside a specific compartment. 'The maximum probability of exceeding the damage thresholds' adopted in a conservative point of view and 'the probability of failure' including the time to damage were compared. The probability of failure suggested in the present study could evaluate the quantitative fire risk more realistically, compared to the maximum probability of exceeding the damage thresholds with the assumption that thermal damage occurred the instant the target reached its minimum failure criteria in terms of the surface temperature and heat flux.

A Study on the Combustion Characteristics of Phenol Foam (페놀 폼의 연소특성에 관한 연구)

  • Park, Hyung-Ju
    • Fire Science and Engineering
    • /
    • v.24 no.1
    • /
    • pp.122-127
    • /
    • 2010
  • The combustion characteristics of phenol foam were analysed using variable external irradiation level (20, 25, 35, 50, and $70kW/m^2$) and in the mixture gas of oxygen/nitrogen. The oxygen index were carried out from the oxygen index tester (KS M ISO 4589-2) and ignition time, critical heat flux, and mass loss rate were carried out from the mass loss calorimeter (ISO 5660-1). As the results of this study, the critical heat flux and average mass loss rate were $28.99kW/m^2$ and $0.56{\sim}1.77g/m^2s$ respectively at the variable external irradiation level. And the limited oxygen index were 45.1% in mixture gas of oxygen/nitrogen. In conclusion, we knew that phenol foam had the best performance than other foam materials in fire safety from all data of this study.

Phenomenological Liquid Film Dryout Model for Upward Flow in Tubes and Annuli (원형 및 환상 채널에 흐르는 수직 상향류의 액막 건조 모델)

  • Hong, Sung-Deok;Chun, Se-Young
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.201-207
    • /
    • 2001
  • We modeled the liquid film dryout(LFD) process for both tube and annulus which have uniformly heated vertical channels. We set phenomenological initial conditions in the model. The initial void fraction on the onset of the annular flow location is derived from the physical chum-to-annular flow criterion with the help of the drift-flux-model. The initial thermodynamic-equilibrium-quality is calculated by iteration with the flow quality to find the onset of the annular-flow location. Present model tends to predict very well at the lower exit quality but under-estimates at the higher exit quality. We found that the prediction error of the present model is gradually bigger as the inlet subcooling approaches near the saturation. We obtained excellent results for both tube and annulus channels as the mean of 0.97 and root-mean-square error of 11% for the number of 3883 experimental data on tubes, and of 0.96 and of 12% for 593 on annuli. The present model extended the applicable range to the relatively low exit quality region than previous LFD models.

  • PDF

Prediction of Very High Critical Heat Flux for Subcooled Flow Boiling in a Vertical Round Tube (수직 원형관에서 서브쿨비등시 매우 높은 임계열유속의 예측)

  • Kwon, Young-Min;Hahn, Do-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.288-293
    • /
    • 2001
  • A critical heat flux (CHF) prediction method using an artificial neural network (ANN) was evaluated for application to the high-heat-flux (HHF) subcooled flow boiling. The developed ANN predictions were compared with the experimental database consisting of a total of 3069 CHF data points. Also, the prediction performance by the ANN was compared with those by mechanistic models and a look up table technique. The parameter ranges of the experimental data are: $0.33{\leq}D{\leq}37.5mm$, $0.002{\leq}L{\leq}4m$, $0.37{\leq}G{\leq}134Mg/m^2s$, $0.1{\leq}P{\leq}20MPa$, $50\leq{\Delta}h_{sub,in}\leq1660kJ/kg$, and $1.1{\leq}q_{CHF}\leq276MW/m^2$. $276MW/m^2$. It was found that 91.5% of the total data points were predicted within $a{\pm}20%$ error band, which showed the best prediction performance among the existing CHF prediction methods considered.

  • PDF

A comparative study on the flow patterns in closed loop pulsating heat pipe charged with various working fluids (다양한 작동유체로 충전된 폐쇄 루프 맥동 히트파이프 내부 유동패턴 비교)

  • Kang, Seok Gu;Kim, Seong Keun;Ahmad, Hibal;Jung, Sung Yong
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.3
    • /
    • pp.52-58
    • /
    • 2019
  • Thermal performance and flow patterns inside the closed loop pulsating heat pipe (CLPHP) were experimentally investigated. For investigating the effect of working fluids, CLPHP was filled with various working fluids including methanol, acetone and ethanol. The thermal resistance was calculated by temperatures in evaporator and condenser and flow patterns were visualized by a digital camera. The thermal resistances for all fluids were decreased as the heat increases. Flow patterns change from static slug to elongated slug flows, bulk circulation and annular flows as the heat increases. Dry-out occurs after annular flows. For reasonable comparison of thermal performances, normalized CHF, Kutateladze number (Ku), was compared. Even though ethanol has smallest CHF, Ku of ethanol is similar with that of methanol. In addition, acetone has the highest Ku that means CLPHP with acetone provides the higher thermal performance compared with CLPHP with other fluids.

Combustion Characteristics of Spruce Wood by Pressure Impregnation with Waterglass and Carbon Dioxide (물유리와 이산화탄소로 가압함침한 가문비 나무의 연소특성)

  • Park, Hyung-Ju;Lee, Se-Myeoung
    • Fire Science and Engineering
    • /
    • v.26 no.4
    • /
    • pp.18-23
    • /
    • 2012
  • After produce the extracted wood to silicic acid gel, sodium carbonate and silicon dioxide with application of the making method for carbon dioxide, ignition time, ignition temperature, mass loss rate and critical heat flux are measured according to external radiation source (20, 25, 35 and 50 $kW/m^2$). From the results, pressure impregnation wood to use with water glass and carbon dioxide has fire retardant performance at heat flux (less than 20 $kW/m^2$) of Pre-Flashover fires. If we find out the excellent maxing ratio through continuously study, it might be decided to be able to be utilized as fire-retardant wood.

A Study on the Influence of Boiling Heat Transfer of Nanofluid with Particle Length and Mixing Ratio of Carbon Nanotube (탄소나노튜브 입자의 길이와 혼합비율이 나노유체의 비등 열전달에 미치는 영향에 대한 연구)

  • Park, Sung-Seek;Kim, Woo Joong;Kim, Jong Yoon;Jeon, Yong-Han;Kim, Nam-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • A boiling heat transfer system is used in a variety of industrial processes and applications, such as refrigeration, power generation, heat exchangers, cooling of high-power electronics components, and cooling of nuclear reactors. The critical heat flux (CHF) is the thermal limit during a boiling heat transfer phase change; at the CHF point, the heat transfer is maximized, followed by a drastic degradation beyond the CHF point. Therefore, Enhancement of CHF is essential for economy and safety of heat transfer system. In this study, the CHF and heat transfer coefficient under the pool-boiling state were tested using multi-wall carbon nanotubes (MWCNTs) CM-95 and CM-100. These two types of multi-wall carbon nanotubes have different sizes but the same thermal conductivity. The results showed that the highest CHF increased for both MWCNTs CM-95 and CM-100 at the volume fraction of 0.001%, and that the CHF-increase ratio for MWCNT CM-100 nanofluid with long particles was higher than that for MWCNT CM-95 nanofluid with short particles. Also, at the volume fraction of 0.001%, the MWCNT CM-100 nanofluid indicated a 5.5% higher CHF-increase ratio as well as an approximately 23.87% higher heat-transfer coefficient increase ratio compared with the MWCNT CM-95 nanofluid.