• Title/Summary/Keyword: 임계조건

Search Result 628, Processing Time 0.026 seconds

A review on the previously performed hydraulic experiments of bank protection materials (기 수행된 호안재료 수리 검토 실험에 관한 고찰)

  • Chanjoo Lee;Myeonghwan Kim;Sungjung Kim;Muyoung Na
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.297-297
    • /
    • 2023
  • 최근 친수성, 경관, 생태계 보전 등을 위해 다양한 호안블록의 시공이 이루어지고 있어 호안블록의 수리적 안정성에 관한 관심이 증가하고 있다. 이러한 배경 하에 한국건설기술연구원 안동하천실험센터(이하 센터)에서는 2019년부터 실규모 수로를 이용하여 여러 건의 호안블록 실규모 수리검토 실험을 실시한 바 있다. 본 연구는 그간의 실험 결과를 종합적으로 고찰하고 수리 검토 실험의 현황과 한계점, 그리고 개선 방향을 제언하는데 그 목적이 있다. A1 수로(급경사수로, 하상경사 1/70)에서는 7건(21회), B1 수로(고유속수로, 하상경사 1/7)에서는 2건(6회)의 실험이 수행되었다. A1 수로 실험의 유량-소류력 관계는 1.0 m3/s에서 약 20 N/m2이며, 1.0 m3/s 증가당 약 11 N/m2이 증가하는 관계를 나타낸다. 7건의 실험 결과 30분 이상 지속된 최대 실험 유량은 6~7 m3/s 정도이며, 이는 A1 최대 공급 유량의 75 % 정도로서 안정적인 수준이라고 판단된다. 이 때의 최대 소류력은 75 N/m2 정도로 나타났다. B1 수로는 5 m/s 이상의 고유속 흐름을 발생시킬 수있으며, 2건의 실험 결과 0.5 m3/s에서 약 100 N/m2, 최대 4.5 m3/s에서 330 N/m2까지 소류력을 제공하여 실험을 수행한 바 있다. 따라서 A1, B1 수로를 통해 제공할 수 있는 소류력 범위는 10~330 N/m2이지만, 75~100 N/m2는 실험에서 제공된 바 없었다. 한편, 토양유실의 경우 수준측량에 의해 측정되는데, 대부분의 실험에서 Clopper의 토양손실 지수(1.27 cm) 미만의 결과가 발생하였다. 이는 시험체에 따라 여건이 다르기는 하지만, 수리 검토 실험시 3회 실험을 기본으로 하고 있고 호안재료의 침식이 기준 이하로 유지되면서 최대한의 성능을 발휘할 수 있는 소류력 조건을 얻으려는 실험 목적에 부합하도록 조절된 것으로 볼 수 있다. 이러한 실험 결과를 토대로 고려해볼 수 있는 개선 방향은 다음과 같다. 강성 재료가 아닌 연성 또는 친환경적 호안재료의 허용 소류력 범위를 보다 넓게 평가하기 위해 A1 수로가 제공하는 최대 소류력을 높일 필요가 있다. 이를 위해 기본 3회의 실험 외에 추가로 호안블록이 파괴되거나 토양유실 임계치를 초과할 수 있는 실험을 수행함으로써 각 제품의 한계 성능을 평가하는 것이 필요할 것으로 보인다.

  • PDF

Behavioral responses and tolerance limits of wild goldeye rockfish Sebastes thompsoni to high temperature exposure (고 수온 노출에 따른 자연산 불볼락 Sebastes thompsoni의 행동반응 및 내성 한계)

  • Sung-Jin Yoon;Jin-Hyeok Park
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.3
    • /
    • pp.247-254
    • /
    • 2022
  • To investigate the tolerance limit and critical thermal maximum (CTM), behavioral responses of wild goldeye rockfish Sebastes thompsoni according to exposure to high water temperature were observed using a continuous behavior tracking system. As a result, behavioral index (BI) of S. thompsoni in each temperature (20.0, 25.0, and 30.0℃) showed a significant difference (p<0.05) when compared with the value measured in a stable condition of 15.0℃. The activity level of S. thompsoni exposed to 25.0℃ decreased sharply after 20 hours. Their rest time at the bottom of experiment chamber increased, and their normal swimming and metabolic activities were disturbed. In addition, at a high water temperature of 30.0℃, S. thompsoni reached the limit of resistance and showed a sub-lethal reaction of swimming behavior, with energy consumption in the body increased and all test organisms died. In conclusion, the eco-physiological response of S. thompsoni to water temperature varied greatly depending on the fluctuation range of the exposed temperature and the exposure time. In addition, the tolerance limit of S. thompsoni to high water temperature was predicted to be 25.0-30.0℃. The maximum critical thermal that had a great influence on the survival of this species was found to be around 30.0℃.

Asphalt Concrete Pavement Response to Moving Load and Viscoelastic Property (아스팔트 혼합물의 점탄성과 차량의 이동 속도가 포장 거동에 미치는 영향)

  • Jo, Myoung-hwan;Kim, Nakseok;Seo, Youngguk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4D
    • /
    • pp.485-492
    • /
    • 2008
  • This study presents a viscoelastic characterization of flexible pavement subjected to moving loads. A series of field tests have been conducted on three pavement sections (A2, A5, and A8) at the Korea Expressway Corporation (KEC) test road. The effect of vehicle speed on the responses of each test section was investigated at three speeds: 25 km/hr, 50 km/hr, and 80 km/hr. During the test, both longitudinal and lateral strains were measured at the bottom of asphalt layers and in-situ measurements were compared with the results of finite element (FE) analyses. A commercial FE package, ABAQUS was used to model each test section and a step loading approximation has been adopted to simulate the effect a moving vehicle. For viscoelastic analysis, relaxation moduli of asphalt mixtures were obtained from laboratory test. Field responses reveals the strain anisotropy (i.e., discrepancy between longitudinal and lateral strains) and the amplitude of strain normally decreases as the vehicle speed increases. In most cases, lateral strain was smaller than longitudinal strain, and strain reduction was more significant in lateral direction.

Study on Optimum Design for Embankment Construction on Soft Ground Treated by SCP (SCP개량지반상에 성토시공 시 최적설계에 관한 연구)

  • Chae, Jong-gil;Park, Yeong-Mog;Jung, MinSu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6C
    • /
    • pp.251-258
    • /
    • 2009
  • In this study, the optimum design conditions for embankment construction on soft clay layer improved by soil compaction pile (SCP) are discussed by comparing the practical design method to the reliability design which is based on the loss function and advanced first order second moment (AFOSM) method. The results are summarized as follows; 1) the relationship between safety factor and failure probability becomes heavy exponentially, failure probability decreases rapidly till 1% approximately until safety factor is smaller than 1.2 and after then, failure probability decrease gradually along the increase of the safety factor. The design safety factor of 1.2 may be the critical value that has been established on considering both relationships appropriately, 2) the safety factor of 1.15 at the minimum expected total cost is a little smaller than the design safety factor of 1.2 and the failure probability is about 1%, 3) the sensitivities of the ratio of stress share and the internal friction angle of sand is larger than the variables related the undrained shear strength of soft layer. This result means that the distribution characteristic of n and ${\phi}$ influences on the stability analysis considerably and they should be considered necessarily on stability analysis of embankment on soft layer improved by SCP, 4) new failure points of the input variables at the design safety factor of 1.2(below failure probability of 0.1~0.3%) is far 1~2 times of standard deviation from the initial design values of themselves.

Enhancing Electrical Properties of Sol-Gel Processed IGZO Thin-Film Transistors through Nitrogen Atmosphere Electron Beam Irradiation (질소분위기 전자빔 조사에 의한 졸-겔 IGZO 박막 트랜지스터의 전기적 특성 향상)

  • Jeeho Park;Young-Seok Song;Sukang Bae;Tae-Wook Kim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.3
    • /
    • pp.56-63
    • /
    • 2023
  • In this paper, we studied the effect of electron beam irradiation on sol-gel indium-gallium-zinc oxide (IGZO) thin films under air and nitrogen atmosphere and carried out the electrical characterization of the s ol-gel IGZO thin film transistors (TFTs). To investigate the optical properties, crystalline structure and chemical state of the sol-gel IGZO thin films after electron beam irradiation, UV-Visible spectroscopy, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were carried out. The sol-gel IGZO thin films exhibited over 80% transmittance in the visible range. The XRD analysis confirmed the amorphous nature of the sol-gel IGZO films regardless of electron beam irradiation. When electron beam irradiation was conducted in a nitrogen (N2) atmosphere, we observed an increased proportion of peaks related to M-O bonding contributed to the improved quality of the thin films. Sol-gel IGZO TFTs subjected to electron beam exposure in a nitrogen atmosphere exhibited enhanced electrical characteristics in terms of on/off ratio and electron mobility. In addition, the electrical parameters of the transistor (on/off ratio, threshold voltage, electron mobility, subthreshold swing) remained relatively stable over time, indicating that the electron beam exposure process in a nitrogen atmosphere could enhance the reliability of IGZO-based thin-film transistors in the fabrication of sol-gel processed TFTs.

Effects of Fouling and Scaling on the Retention of Explosives in Surface Water by NF-the Role of Cake Enhanced Concentration Polarisation (지표수 조건의 나노여과공정에서 파울링 및 스케일링이 화약류 물질 잔류에 미치는 영향 연구 - 케익층 형성 및 농도분극 영향 분석)

  • Heo, Jiyong;Han, Jonghun;Lee, Heebum;Lee, Jongyeol;Her, Namguk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.4
    • /
    • pp.13-22
    • /
    • 2015
  • The combined impact of Dissolved Organic Matter (DOM) fouling and inorganic ($CaSO_4,Ca_3(PO_4)_2$) scaling on the retention of TNT (2, 4, 6-Trinitrotoluene), RDX (Hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine) and HMX (1, 3, 5, 7-Tetranitro-1, 3, 5, 7-tetrazocane) explosive contaminants by nano-filtration membrane were studied, since organic fouling and salt scaling are the major limitations for membrane filtration. Results reported here indicate that DOM fouling layer with a humic acid does not necessarily lead to an immediate loss of permeate flux but can result in a severe impact on the flux loss when both humic acid and inorganic scaltants were presented simultaneously. The $Ca_3(PO_4)_2$ mixed with humic acid showd most sever flux loss (42%) compared to that of only humic acid presence (8%). It could be a result that the scaling formation of the NF membrane was dominated by cake layer formation of DOM and it was along with pore blocking by the formation of crystals inside the porous active matrix of the NF membrane. In addition, these results indicated that the membrane selectivity of the explosives retention trended correlated with respect to increasing explosives size (listed by MW) based on greater steric interactions and followed the order (MW, g $mol^{-1}$; removal, %): HMX (296.15; 83%) ${\gg}$ RDX (222.12; 49%) ≋ TNT (227.13; 32%). Because the scaling and fouling layer could lead to a additional cake-enhanced concentration polarisation effect, the retention of explosives with the presence of humic acid in the feed solution and inorganic scaling formation on top of an organic fouling layer do not differ substantially retention from that of pure DI feed and NaCl solution.

A Feasibility Study of the K-LandBridge through a Linear Programming Model of Minimum Transport Costs (최소운송비용의 선형계획모형을 통한 K-LandBridge의 타당성 연구)

  • Koh, Yong Ki;Seo, Su Wan;Na, Jung Ho
    • Journal of Korea Port Economic Association
    • /
    • v.32 no.3
    • /
    • pp.95-108
    • /
    • 2016
  • China has recently advocated a national strategy called "One Belt One Road" and transferred to execution to refine it into detailed action plans and has continued to fix the complement. However, the Korean Peninsula, including the North Korea remains could not be included at all in the Chinese development policy and framework in terms of the International Logistics. Currently it is raised between Korea-China rail ferry system again and that is when we need to make effective policy development on international multimodal transport system in Northeast Asia. This paper introduces the K-LB (Korea LandBridge) as its execution plan and conducted a feasibility study on this. K-LB consists of a Korea-Russian train ferry system based in Pohang Yeongil New Port(light-wing) and a Korea-China train ferry system based in Saemangeum New Port(left-wing). These two wings are linked to the existing rail system in Korea. This study is convinced that the K-LB is an effective international logistics system in the current terms and conditions and also demonstrated that it is feasible to introduce th K-LB on the peninsula. More strictly speaking, through a linear programming under objective function that minimize the transport cost quantified prior to demonstrate the feasibility, the available ranges and conditions for the transportation costs that are ensured the effectiveness of the K-LB are presented as results. According to the results, if the transport cost of K-LB is cheaper about 34.5% than that of sea transport such as container transport, the object goods may be transported by K-LB on this route. It means that the K-LB system has a competitive advantage due to more rapid customs clearance as well as omitted loading and unloading procedures over container transportation system. It also noted that the threshold level may not be large. Therefore, K-LB has competitive enough to prove its introduction in the Northeast Asian logistics system.

GF/PC Composite Filament Design & Optimization of 3D Printing Process and Structure for Manufacturing 3D Printed Electric Vehicle Battery Module Cover (전기자동차 배터리 모듈 커버의 3D 프린팅 제작을 위한 GF/PC 복합소재 필라멘트 설계와 3D 프린팅 공정 및 구조 최적화)

  • Yoo, Jeong-Wook;Lee, Jin-Woo;Kim, Seung-Hyun;Kim, Youn-Chul;Suhr, Jong-Hwan
    • Composites Research
    • /
    • v.34 no.4
    • /
    • pp.241-248
    • /
    • 2021
  • As the electric vehicle market grows, there is an issue of light weight vehicles to increase battery efficiency. Therefore, it is going to replace the battery module cover that protects the battery module of electric vehicles with high strength/high heat-resistant polymer composite material which has lighter weight from existing aluminum materials. It also aims to respond to the early electric vehicle market where technology changes quickly by combining 3D printing technology that is advantageous for small production of multiple varieties without restrictions on complex shapes. Based on the composite material mechanics, the critical length of glass fibers in short glass fiber (GF)/polycarbonate (PC) composite materials manufactured through extruder was derived as 453.87 ㎛, and the side feeding method was adopted to improve the residual fiber length from 365.87 ㎛ and to increase a dispersibility. Thus, the optimal properties of tensile strength 135 MPa and Young's modulus 7.8 MPa were implemented as GF/PC composite materials containing 30 wt% of GF. In addition, the filament extrusion conditions (temperature, extrusion speed) were optimized to meet the commercial filament specification of 1.75 mm thickness and 0.05 mm standard deviation. Through manufactured filaments, 3D printing process conditions (temperature, printing speed) were optimized by multi-optimization that minimize porosity, maximize tensile strength, and printing speed to increase the productivity. Through this procedure, tensile strength and elastic modulus were improved 11%, 56% respectively. Also, by post-processing, tensile strength and Young's modulus were improved 5%, 18% respectively. Lastly, using the FEA (finite element analysis) technique, the structure of the battery module cover was optimized to meet the mechanical shock test criteria of the electric vehicle battery module cover (ISO-12405), and it is satisfied the battery cover mechanical shock test while achieving 37% lighter weight compared to aluminum battery module cover. Based on this research, it is expected that 3D printing technology of polymer composite materials can be used in various fields in the future.

Rainfall image DB construction for rainfall intensity estimation from CCTV videos: focusing on experimental data in a climatic environment chamber (CCTV 영상 기반 강우강도 산정을 위한 실환경 실험 자료 중심 적정 강우 이미지 DB 구축 방법론 개발)

  • Byun, Jongyun;Jun, Changhyun;Kim, Hyeon-Joon;Lee, Jae Joon;Park, Hunil;Lee, Jinwook
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.6
    • /
    • pp.403-417
    • /
    • 2023
  • In this research, a methodology was developed for constructing an appropriate rainfall image database for estimating rainfall intensity based on CCTV video. The database was constructed in the Large-Scale Climate Environment Chamber of the Korea Conformity Laboratories, which can control variables with high irregularity and variability in real environments. 1,728 scenarios were designed under five different experimental conditions. 36 scenarios and a total of 97,200 frames were selected. Rain streaks were extracted using the k-nearest neighbor algorithm by calculating the difference between each image and the background. To prevent overfitting, data with pixel values greater than set threshold, compared to the average pixel value for each image, were selected. The area with maximum pixel variability was determined by shifting with every 10 pixels and set as a representative area (180×180) for the original image. After re-transforming to 120×120 size as an input data for convolutional neural networks model, image augmentation was progressed under unified shooting conditions. 92% of the data showed within the 10% absolute range of PBIAS. It is clear that the final results in this study have the potential to enhance the accuracy and efficacy of existing real-world CCTV systems with transfer learning.

Relationships on Magnitude and Frequency of Freshwater Discharge and Rainfall in the Altered Yeongsan Estuary (영산강 하구의 방류와 강우의 규모 및 빈도 상관성 분석)

  • Rhew, Ho-Sang;Lee, Guan-Hong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.4
    • /
    • pp.223-237
    • /
    • 2011
  • The intermittent freshwater discharge has an critical influence upon the biophysical environments and the ecosystems of the Yeongsan Estuary where the estuary dam altered the continuous mixing of saltwater and freshwater. Though freshwater discharge is controlled by human, the extreme events are mainly driven by the heavy rainfall in the river basin, and provide various impacts, depending on its magnitude and frequency. This research aims to evaluate the magnitude and frequency of extreme freshwater discharges, and to establish the magnitude-frequency relationships between basin-wide rainfall and freshwater inflow. Daily discharge and daily basin-averaged rainfall from Jan 1, 1997 to Aug 31, 2010 were used to determine the relations between discharge and rainfall. Consecutive daily discharges were grouped into independent events using well-defined event-separation algorithm. Partial duration series were extracted to obtain the proper probability distribution function for extreme discharges and corresponding rainfall events. Extreme discharge events over the threshold 133,656,000 $m^3$ count up to 46 for 13.7y years, following the Weibull distribution with k=1.4. The 3-day accumulated rain-falls which occurred one day before peak discharges (1day-before-3day -sum rainfall), are determined as a control variable for discharge, because their magnitude is best correlated with that of the extreme discharge events. The minimum value of the corresponding 1day-before-3day-sum rainfall, 50.98mm is initially set to a threshold for the selection of discharge-inducing rainfall cases. The number of 1day-before-3day-sum rainfall groups after selection, however, exceeds that of the extreme discharge events. The canonical discriminant analysis indicates that water level over target level (-1.35 m EL.) can be useful to divide the 1day-before-3day-sum rainfall groups into discharge-induced and non-discharge ones. It also shows that the newly-set threshold, 104mm, can just separate these two cases without errors. The magnitude-frequency relationships between rainfall and discharge are established with the newly-selected lday-before-3day-sum rainfalls: $D=1.111{\times}10^8+1.677{\times}10^6{\overline{r_{3day}}$, (${\overline{r_{3day}}{\geqq}104$, $R^2=0.459$), $T_d=1.326T^{0.683}_{r3}$, $T_d=0.117{\exp}[0.0155{\overline{r_{3day}}]$, where D is the quantity of discharge, ${\overline{r_{3day}}$ the 1day-before-3day-sum rainfall, $T_{r3}$ and $T_d$, are respectively return periods of 1day-before-3day-sum rainfall and freshwater discharge. These relations provide the framework to evaluate the effect of freshwater discharge on estuarine flow structure, water quality, responses of ecosystems from the perspective of magnitude and frequency.