• 제목/요약/키워드: 임계온도

Search Result 561, Processing Time 0.031 seconds

Analysis on the Thermal Efficiency of Branch Prediction Techniques in 3D Multicore Processors (3차원 구조 멀티코어 프로세서의 분기 예측 기법에 관한 온도 효율성 분석)

  • Ahn, Jin-Woo;Choi, Hong-Jun;Kim, Jong-Myon;Kim, Cheol-Hong
    • The KIPS Transactions:PartA
    • /
    • v.19A no.2
    • /
    • pp.77-84
    • /
    • 2012
  • Speculative execution for improving instruction-level parallelism is widely used in high-performance processors. In the speculative execution technique, the most important factor is the accuracy of branch predictor. Unfortunately, complex branch predictors for improving the accuracy can cause serious thermal problems in 3D multicore processors. Thermal problems have negative impact on the processor performance. This paper analyzes two methods to solve the thermal problems in the branch predictor of 3D multi-core processors. First method is dynamic thermal management which turns off the execution of the branch predictor when the temperature of the branch predictor exceeds the threshold. Second method is thermal-aware branch predictor placement policy by considering each layer's temperature in 3D multi-core processors. According to our evaluation, the branch predictor placement policy shows that average temperature is $87.69^{\circ}C$, and average maximum temperature gradient is $11.17^{\circ}C$. And, dynamic thermal management shows that average temperature is $89.64^{\circ}C$ and average maximum temperature gradient is $17.62^{\circ}C$. Proposed branch predictor placement policy has superior thermal efficiency than the dynamic thermal management. In the perspective of performance, the proposed branch predictor placement policy degrades the performance by 3.61%, while the dynamic thermal management degrades the performance by 27.66%.

Crystal growth and transport current properties of cylindrical (YSmNd)-Ba-Cu-O superconductors by zone melt growth method (존멜팅법을 이용한 원통형 (YSmNd)-Ba-Cu-O계 초전도체의 결정성장 및 수송 전류 특성)

  • Kim, So-Jung;Park, Jong-Kuk
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.5
    • /
    • pp.199-204
    • /
    • 2011
  • $(YSmNd)_{1.8}Ba_{2.4}Cu_{3.4}O_{7-x}$ [(YSN)1.8] high $T_c$ superconductor was directionally grown by zone melt growth process, in air atmosphere. In this study, optimum melting temperature and growth rate were $1100^{\circ}C$ and 3.5 mm/hr, respectively. The microstructure of well-textured (YSN)1.8 samples were examined by XRD, optical microscopy, TEM and SQUID magnetometer. The critical current density of these samples were measured by the direct transporting current method. In the observation using an optical microscopy, nonsuperconducting $(YSmNd)_2BaCuO_5$[(YSN)211] inclusions of (YSN)1.8 superconductor uniformly distributed within the superconducting (YSmNd)$Ba_2Cu_3O_x$[(YSN)123] matrix. The directionally melt-textured (YSN)1.8 superconductor showed an onset $T_c{\geq}90\;K$ and sharp superconducting transition. The transport $J_c$ values were 830 A and $3.93{\times}10^4$ (A/$cm^2$) at 77 K self-field, respectively.

Effects of Temperature Conditions on the Growth and Oviposition of Brown Planthopper, Nilaparvata lugens $St{\aa}l$ (온도조건(溫度條件)이 벼멸구의 발육(發育) 및 산란(産卵)에 미치는 영향(影響)에 관한 연구(硏究))

  • Bae, Soon-Do;Song, Yoo-Han;Park, Yeong-Do
    • Korean journal of applied entomology
    • /
    • v.26 no.1 s.70
    • /
    • pp.13-23
    • /
    • 1987
  • This study was conducted to know the effects of temperature conditions on the growth and oviposition of the brown planthopper(BPH), Nilaparvata lugens $St{\aa}l$. Results obtained were to predict the timing of the BPH control by measuring population dynamics of the BPH in response to temperature fluctuations upon migration of the insects in paddy fields. Developmental and ovipositional rates under constant and alternating temperature conditions were observed in a plant growth cabinet. Hatchabilities of eggs of the BPH were the highest at $25^{\circ}C$ and were decreased below or above the optimum temperature. Egg periods were the shortest at $27.5^{\circ}C$ and prolonged with decreasing temperature, but retarded at higher temperature above $30^{\circ}C$. Adult emergence rates were the highest at $27.5^{\circ}C$ and reduced with decreasing temperature, and no adult emerged at $32.5^{\circ}C$ and $35^{\circ}C$. Developmental period of nymph was the shortest at both $27.5^{\circ}C$ and $30^{\circ}C$, but extended with decreasing temperature. Female longevity was increased with decreasing temperature and the male longevity was the shortest at $27.5^{\circ}C$. Preoviposition period was the shortest at $32.5^{\circ}C$, but prolonged with decreasing temperature. It was about 6.5 times longer at $17.5^{\circ}C$ than that at $32.5^{\circ}C$. Number of eggs oviposited per female was the greatest at $25^{\circ}C$, but decreased at the temperature below or above the optimum. Under the same total effective day-degrees, hatchabilty at the alternating temperature was about 10% higher than that at the constant temperature but egg period at the alternating temperature was nearly identical as that at the constant. Under the $22^{\circ}C$ condition, emergence rate was about 8% higher at the alternating temperature than that at the constant, however, at the $28^{\circ}C$, the rate was about 8% higher at the constant than that at the alternating. Nymphal period was about $4{\sim}6$ days longer at the alternating temperature than that at the constant. Under the same total effective day-degrees in adult stage, both longevity and oviposition period were longer at alternating temperature than those at the constant. Number of eggs oviposited per female was also higher at the alternating. Longevities of females reared under $28^{\circ}C$ of constant temperature was the longest no matter what temperatures they were exposed after the emergence. This result seems to be indicating that female longevity is greatly influenced by the temperature to which they were exposed durings immature stages. Preoviposition period was affected by the temperature exposed during the nympal and adult stage whereas the number of eggs oviposited was affected by the temperature during the adult stage only. Based on the results from this study, the developmental threshold temperatures seem to be $14.12^{\circ}C$ for eggs, $14.76^{\circ}C$ for nymphs, $9.62^{\circ}C$ for adults, and $15.95^{\circ}C$ for preoviposition period. Estimated values of the total effective temperature for completing each stage were 141.25 day-degrees for eggs, 167.83 day-degrees for nymphs, 349.64 day-degrees for adults, and 58.60 day-degrees for preoviposition.

  • PDF

The influence of temperature gradient and rotation rate on Bi4Ge3O12 crystal growth by czochralski method (쵸크랄스키법에 의한 $Bi_4Ge_3O_{12}$ 단결정 육성에서 온도구배와 회전속도가 미치는 영향)

  • 배인국;황진명
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.6
    • /
    • pp.585-589
    • /
    • 1999
  • In order to grow $Bi_4Ge_3O_{12}$ crystals by the Czochralski method equipped with the auto-diameter control system, we used the resistance heater of our own design. We measure the temperature gradients under-arious thermal configurations. The relation between the critical rotation rate corresponding to the flat interface and the temperature gadient was investigated, and the importance of the axial temperature gradient was pointed out. The results from this work were compared with those obtained by other authors when RF heating was used. The optimal conditions for the crystal growth were determined as follows; under $O_2$ atmosphere with the pulling rate fixed at 2 mm/hr, rotation rate changed from 30 to 23 rpm as the crystal growth proceeded, radial and axial temperature gradients were 50 and $40^{\circ}C$/cm near melts respectively, and the composition was chemically stoichiometric.

  • PDF

Thermodynamic Study on the Mixed Micellization of Cationic Surfactants DPC and TTAB (양이온 계면활성제인 DPC와 TTAB의 혼합마이셀화에 대한 열역학적 고찰)

  • Lee, Byung Hwan
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.6
    • /
    • pp.614-620
    • /
    • 1999
  • The critical micelle concentration (CMC) and the counterion binding constant (${\beta}$) at the CMC of the mixtures of Dodecylpyridinium chloride (DPC) and Tetradecyltrimethylammonium bromide (TTAB) have been determined from the concentration dependence of electrical conductance at various temperatures from $4^{\circ}C$ to $36^{\circ}C$. Thermodynamic parameters (${\Delta}C_p$, ${\Delta}G^o_m$, ${\Delta}H^o_m$ and ${\Delta}S^o_m$), associated with the micelle formation of DPC/TTAB mixtures, have been estimated from the temperature dependence of CMC and ${\beta}$values. The measured values of ${\Delta}C_p$ and ${\Delta}G^o_m$ are negative but the values of ${\Delta}S^o_m$ are positive in the whole measured temperature region. The values of ${\Delta}H^o_m$ are positive at low temperature region and negative at high temperature region. The results show that all of the thermodynamic parameters are dependent on temperature and mole fraction of DPC(${\alpha}_DPC$).

  • PDF

Development and Implementation of an Over-Temperature Protection System for Power Semiconductor Devices (전력용 반도체 소자의 과열보호시스템 설계 및 구현)

  • Choi, Nak-Gwon;Lee, Sang-Hoon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.2
    • /
    • pp.163-168
    • /
    • 2010
  • This paper presents the practical implementation of an over-temperature protection system for power semiconductor devices. In the proposed system, temperature variation is provided with just using $R_{ds(on)}$ characteristics of power MOSFET, while extra device such as a temperature sensor or an over-temperature detection transistor is needed to monitor the temperature in the conventional method. The proposed protection technique is experimentally tested on IRF840 power MOSFET. The PIC microcontroller PIC16F877A is used for the implementation of the proposed protection algorithm. The built-in 10-bit A/D converter is utilized for detecting voltage variance between a drain and a source of IRF840. The induced temperature-resistance relationship based on the measured drain-source voltage, supplies a gate signal to the power MOSFET. If detected temperature's voltage exceeds any a protection temperature's voltage, the microcontroller removes the trigger signal from the power MOSFET. These test results showed satisfactory performances of the proposed protection system in term of accuracy within 1.5%.

A Study on the Microstructure and Properties of Y-BA-Cu-O/Ag composite High $T_{c}$ Superconductor prepared by Sinter-forging Process (Sinter forging으로 제조한 Y-BA-Cu-O/Ag 고온 초전도 복합체의 미세조직과 특성)

  • Park, Jong-Hyeon;Kim, Byeong-Cheol;Song, Jin-Tae
    • Korean Journal of Materials Research
    • /
    • v.4 no.1
    • /
    • pp.37-43
    • /
    • 1994
  • Y-Ra-Cu-0 oxide superconductors were fabricated by the sinter-forging method to make the critical current density improve through controlling of microstructure and crystal texture. The grain alignment of oxide superconductor was formed by the sinter-forging process and it's c-axis orientation was parallel to the press direction.The orientation factor of texture increased with sinking temperature and pressure, and also grain alignment was improved by the addition of Ag. As for the sinterforged Y-Ba-Cu-O/Ag sample, the $T_c$(on-set) was not almost varied with the sinter-forging temperature, but $T_c\;^{zero}$ decreased more or less at high sinter-forging temperatures. In addition, it was observed that added-Ag was mainly distributed along the grain boundar~es in the (123) matrix, resulting in the densification of microstructure. From these results, i t was thought that the improvement of $J_c$ over 2000A/$\textrm{cm}^2$ was attributed to the texture, densification of microstructure, and (123) grain growth due to the Ag addition.

  • PDF

On Mapping Growing Degree-Days (GDD) from Monthly Digital Climatic Surfaces for South Korea (월별 전자기후도를 이용한 생장도일 분포도 제작에 관하여)

  • Kim, Jin-Hee;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • The concept of growing degree-days (GDD) is widely accepted as a tool to relate plant growth, development, and maturity to temperature. Information on GDD can be used to predict the yield and quality of several crops, flowering date of fruit trees, and insect activity related to agriculture and forestry. When GDD is expressed on a spatial basis, it helps identify the limits of geographical areas suitable for production of various crops and to evaluate areas agriculturally suitable for new or nonnative plants. The national digital climate maps (NDCM, the fine resolution, gridded climate data for climatological normal years) are not provided on a daily basis but on a monthly basis, prohibiting GDD calculation. We applied a widely used GDD estimation method based on monthly data to a part of the NDCM (for Hapcheon County) to produce the spatial GDD data for each month with three different base temperatures (0, 5, and $10^{\circ}C$). Synthetically generated daily temperatures from the NCDM were used to calculate GDD over the same area and the deviations were calculated for each month. The monthly-data based GDD was close to the reference GDD using daily data only for the case of base temperature $0^{\circ}C$. There was a consistent overestimation in GDD with other base temperatures. Hence, we estimated spatial GDD with base temperature $0^{\circ}C$ over the entire nation for the current (1971-2000, observed) and three future (2011-2040, 2041-2070, and 2071-2100, predicted) climatological normal years. Our estimation indicates that the annual GDD in Korea may increase by 38% in 2071-2100 compared with that in 1971-2000.

A Study on the Film-Formation Mechanism by Ionized Cluster Beam Deposition (이온화 클러스터 빔 증착의 박막 형성 기구에 관한 연구)

  • Shin, C.B.;Lee, K.H.;Hwang, G.S.;Moon, S.H.;Cho, W.I.;Yun, K.S.
    • Applied Chemistry for Engineering
    • /
    • v.7 no.3
    • /
    • pp.464-472
    • /
    • 1996
  • The mechanism of thin-film formation by Ionized Cluster Beam Deposition(ICBD) was investigated. A simulation program based on the Monte-Carlo method was developed in order to investigate the effects of the acceleration voltage, substrate temperature, activation energy for the surface migration, and critical nuclei size on grain size and surface roughness. Studies of the effect of kinetic energy of clusters on the film formation processes revealed that high acceleration voltage enhanced the surface-migration of adatoms and made it easier for an epitaxial film to be formed. The relaxation time of kinetic energy of adatoms increased with the substrate temperature, which in turn increased the grain size of the crystalline film. This effect was more clearly distinguished when the critical nuclei size was large. The surface-migration activation energy was found to affect the interaction between the adatoms and the substrate and thus the relaxation time of kinetic energy. Investigations of the surface roughness revealed that the acceleration voltage, the substrate temperature, and the surface-migration activation energy exerted a collective effect on the morphology of the film surface.

  • PDF

Study on the Micellization of CPC/Brij 35 Mixed Surfactant Systems in Water (순수 물에서 CPC/Brij 35 혼합계면활성제의 미셀화에 대한 연구)

  • Gil, Han-Nae;Lee, Byung-Hwan
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.2
    • /
    • pp.118-124
    • /
    • 2009
  • The values of critical micelle concentration (CMC) and counter ion binding constants (B) in a micellar state of CPC (1-hexadecylpyridinium chloride) with Brij 35 (polyoxyethylene(23) lauryl ether) in water were determined as a function of ${\alpha}_1$ (the overall mole fraction of CPC) by the use of electric conductivity method. Various thermodynamic parameters ($X_i,\;{\gamma}_i,\;C_i,\;a_{i}^{M},\;\beta,\;and\;{\Delta}H_{mix}$) were calculated and analyzed by means of the equations derived from the non-ideal mixed micellar model. And thermodynamic parameters (${\Delta}{G^o}_m,\;{\Delta}{H^o}_m,\;and\;{\Delta}{S^o}_m$) for the micellization of CPC/Brij 35 mixtures were also calculated from the temperature dependence of the CMC values. The values of ${\Delta}{G^o}_m$ are all negative, but the values of ${\Delta}{S^o}_m$ and ${\Delta}{H^o}_m$ are positive or negative, depending on the measured temperature and ${\alpha}_1$.