• Title/Summary/Keyword: 임계온도

Search Result 561, Processing Time 0.034 seconds

Thermodynamic Study on the Micellar Properties of DBS/Brij 30 Mixed Surfactant Systems (DBS/Brij 30 혼합계면활성제의 미셀화에 대한 열역학적 연구)

  • Lee, Byeong-Hwan;Park, In-Jeong
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.3
    • /
    • pp.190-195
    • /
    • 2006
  • The critical micelle concentrations (CMC) and the counter ion binding constants (B) in a micellar state of the mixed surfactant systems of sodium dodecylbenzenesulfonate (DBS) with polyoxyethylene(4) lauryl ether (Brij 30) in water were determined as a function of 1 (the overall mole fraction of DBS) by the use of electric conductivity method and surface tensiometer method from 288 K to 308 K. Various thermodynamic parameters (Smo, Hmo, and Gmo) for the micellization of DBS/Brij 30 mixtures were calculated and analyzed from the temperature dependence of CMC values. The measured values of Gomare all negative but the values of Smo are positive in the whole measured temperature region. On the other hand, the values of Hmo are positive or negative, depending on the measured temperature and 1.

Development of Compensation-Type Fire Detector Using Metal-Insulator-Transition Critical-Temperature Sensor (금속-절연체 전이 임계온도센서를 이용한 보상식 화재 감지기 개발)

  • Jung, Sun-Kyu;Kim, Hyun-Tak
    • Fire Science and Engineering
    • /
    • v.28 no.1
    • /
    • pp.26-30
    • /
    • 2014
  • A Compensation-type fire detector (CFD) is operated with two functions of a differential-temperature detector and as a fixed-temperature detector. The differential-temperature detector observes a rate of temperature increase, and the fixed-temperature detector measures a given fixed temperature. The differential-temperature detector does not observe the outbreak of fire in slowly increasing temperature conditions, whereas the fixed-temperature detector is not able to observe the outbreak of fire in conditions under predetermined temperature level. We developed a CFD to compensate for weaknesses of both detectors. To compensate for the disadvantages, a sensor of the sensor metal-insulator-transition critical-temperature sensor was used. Temperature coefficient of resistance is the sensitivity for sensor. At $55^{\circ}C$, temperature coefficient of resistance of metal-insulator-transition critical-temperature sensor was 14.15%. Temperature coefficient of resistance of thermistor was about 0.5%. This CFD was operated as two ways that fixed-temperature detector and differential-temperature detector in one sensor.

A Statistical-Mechanical Model for Solutions of Monodisperse Micelles (단분산 마이셀 용액의 통계 역학적 모델)

  • Kang, Kye-Hong;Lim, Kyung-Hee
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.824-832
    • /
    • 2008
  • micellar solution which is comprised of surfactant monomers, monodisperse micelles, and solvent(water) is studied from a statistical-mechanical point of view. The model examined in this article is for the ideal mixture of monomers, micelles, and solvent with the dielectric constant identical to that of solvent, which is an assumption common to continuum models. The model also reflects interactions between monomer and solvent molecule, and also between micelle and solvent molecule. The statistical-mechanical model under consideration yields ln $X_{CMC}=A+BT+C/T+D{\ln}T$ with $X_{CMC}$ being critical mcielle concentration (in mole fraction), being temperature, and A, B, C, D being constants which depend on the properties of the surfactant molecules. The statistical-mechanical model discussed in this article provides a theoretical basis on the thermal dependence of critical micelle concentration

Reliability Analysis in PtSi-nSi Devices with Concentration Variations of Junction Parts (접합 부분의 농도 변화를 갖는 PtSi-nSi 소자에서 신뢰성 분석)

  • 이용재
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.1
    • /
    • pp.229-234
    • /
    • 1999
  • We analyzed the reliability characteristics in platinum schottky diodes with variations of n-type silicon substrates concentrations and temperature variations of measurements. The parameters of reliability measurement analysis are saturation current. turn-on voltage and ideality factor in the forward bias, the breakdown voltage in the reverse bias with device shapes. The shape of devices are square type and long rectangular type for edge effect. As a result, we analyzed that the forward turn-on voltage, barrier height, dynamic resistance and reverse breakdown voltage were decreased but ideality factor and saturation current were increased by increased concentration in platinum and n-silicon junction parts. In measurement temperature(RT, $50^{\circ}C$, $75^{\circ}C$), the extracted electrical parameter values of reliability characteristics were increased at the higher temperature under the forward and reverse bias. The long rectangular type devices were more decreased than the square type in reverse breakdown voltage by tunneling effects of edge part.

  • PDF

ZnO Film Deposition on Aluminum Bottom Electrode for FBAR Filter Applications and Effects of Deposition Temperature on ZnO Crystal Growth (FBAR 필터 응용을 위한 Al 하부전극 상에서 ZnO 박막 증착 및 온도가 ZnO 결정의 성장에 미치는 영향)

  • ;;;Mai Linh
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.2
    • /
    • pp.255-262
    • /
    • 2003
  • In this paper, an investigation on the ZnO film deposition using radio-frequency magnetic sputtering techniques on aluminum bottom electrode for film bulk acoustic wave resonator (FBAR) filter applications and the temperature effects on the ZnO film growth is presented. The investigation on how much impact the actual process temperature may have on the crystal growth is more meaningful if it is considered that the piezoelectricity property of ZnO films plays a dominant role in determining the resonance characteristics of FBAR devices and the piezoelectricity is determined by the degree of the c-axis preferred orientation of the deposited ZnO films. In this experiment, it was found that the growth of ZnO crystals has a strong dependence on the deposition temperature ranged from room temperature to $350^{\circ}C$ regardless of the RF powers applied and there exist 3 temperature regions divided by 2 critical temperatures according to the degree of the c-axis preferred orientation. Overall, below $200^{\circ}C$, ZnO deposition results in columnar grains with a highly preferred c-axis orientation. With this ZnO film, a multilayered FBAR structure could be realized successfully.

Studies on Heading Date of Wheat and Barley IV. The Influence of Temperature and Photoperiod on the Ecological Characteristics of Barley (맥류의 출수기에 관한 연구 IV. 온도와 일장이 대맥의 생태적 특성에 미치는 영향)

  • 하용웅;이성희
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.29 no.4
    • /
    • pp.386-393
    • /
    • 1984
  • This study was carried out to identify the ecological characters easily changeable with the conditions of temperature and day-length and to ascertain the managable means which can optimize the barley plants to secure the maximae yield and early heading under controlled condition. Yield and yield components were greatly varied with temperature. Especially, effective tiller formation and grain filling of sub-tillers were more favorably affected by thermal treatment than those of main tiller. In thermic response, 'Kangbori' was less susceptible than others, while 'Sacheon #6' showed particular susceptability. The varietal differences of photoperiodic response were recognized on all investigated traits and their degree of response were similar to those with temperature. Among varieties, 'Kangbori' was comparably sensitive on several characters while 'Sacheon #6' displaying low light-sensitivity. The turning point at which heading might be radically stimulated was estimated as about 10.5 hour day-length in 3 tested varieties and above 18 hours of irradiance was considered ineffective for more rapid heading. The condition under which barley varieties may obtain maximal yield and resonably early heading was 15$^{\circ}C$ in temperature and 12 to 15 hours of day-length, regardless of varieties. of day-length, regardless of varieties.

  • PDF

The Effect of Temperature and Radiation on Grain Weight and Grain Nitrogen Content in Rice (등숙기 기온 및 일사량이 벼 종실중 및 종실질소함량에 미치는 영향)

  • Lee, Chung-Kuen;Kim, Deok-Su;Kwon, Young-Up;Lee, Jae-Eun;Seo, Jong-Ho;Lee, Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.1
    • /
    • pp.36-44
    • /
    • 2009
  • This experiment was conduced to clarify the effects of growth temperature and radiation on grain weight increase and grain nitrogen accumulation in rice. Final grain weight became heavy and grain-filling duration shortened with radiation increase during grain-filling period (GFP). In addition, grain nitrogen accumulated duration during GFP was influenced strongly, but final grain nitrogen content was influenced slightly by accumulated radiation (AR). Accumulated effective temperature (AET) described well variation of grain weight (GW) and grain nitrogen content (GN), but GW and GN showed large variation under different radiation during GFP, when related with AET or AR, indicating that there was a limiting in describing variation of GW and GN by any single factor between AET and AR. However, AET multiplied by AR could describe relatively well the variations of GW and GN regardless of radiation during GFP.

Analysis on the Performance and Temperature of the 3D Quad-core Processor according to Cache Organization (캐쉬 구성에 따른 3차원 쿼드코어 프로세서의 성능 및 온도 분석)

  • Son, Dong-Oh;Ahn, Jin-Woo;Choi, Hong-Jun;Kim, Jong-Myon;Kim, Cheol-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.6
    • /
    • pp.1-11
    • /
    • 2012
  • As the process technology scales down, multi-core processors cause serious problems such as increased interconnection delay, high power consumption and thermal problems. To solve the problems in 2D multi-core processors, researchers have focused on the 3D multi-core processor architecture. Compared to the 2D multi-core processor, the 3D multi-core processor decreases interconnection delay by reducing wire length significantly, since each core on different layers is connected using vertical through-silicon via(TSV). However, the power density in the 3D multi-core processor is increased dramatically compared to that in the 2D multi-core processor, because multiple cores are stacked vertically. Unfortunately, increased power density causes thermal problems, resulting in high cooling cost, negative impact on the reliability. Therefore, temperature should be considered together with performance in designing 3D multi-core processors. In this work, we analyze the temperature of the cache in quad-core processors varying cache organization. Then, we propose the low-temperature cache organization to overcome the thermal problems. Our evaluation shows that peak temperature of the instruction cache is lower than threshold. The peak temperature of the data cache is higher than threshold when the cache is composed of many ways. According to the results, our proposed cache organization not only efficiently reduces the peak temperature but also reduces the performance degradation for 3D quad-core processors.

Transition of Natural Convective Flows Subjected to Small-Wave-Number Sinusoidal Wall Temperatures with Phase Difference (위상 차이가 있는 작은 파동수의 정현적인 벽면 온도 하에서의 자연 대류 유동의 천이)

  • Yoo, Joo-Sik
    • 대한공업교육학회지
    • /
    • v.33 no.2
    • /
    • pp.300-311
    • /
    • 2008
  • This study investigates the natural convection of air(Pr=0.7) between two walls having a small- wave- number sinusoidal temperature distributions with a phase difference. The wave number and the phase difference of wall temperatures are k=0.5 and ㄱ/2, respectively. In the conduction-dominated regime at small Rayleigh number, two slightly inclined cells are formed over one wave length. At higher Rayleigh number, however, multicellular convection occurs in thermally unstable region. A spatial symmetry is intermittently broken in the transient period at the Rayleigh number near the critical value. The steady-state flows always satisfy the spatial symmetry. A steep increase of Nusselt number occurs near the Rayleigh number at which transition of flow pattern occurs.

Nonlinear Transient Heat Transfer Analysis Based on LANCZOS Coordinates (LANCZOS 알고리즘에 기초한 비선형 트랜지언트 열전달 해석)

  • Im, Chang Kyun;Chang, Sung Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.2 s.35
    • /
    • pp.317-326
    • /
    • 1998
  • This paper describes a reduced finite element formulation for nonlinear transient heat transfer analysis based on Lanczos Algorithm. In the proposed reduced formulation all material nonlinearities of irradiation boundary element are included using the pseudo force method and numerical time integration of the reduced formulation is conducted by Galerkin method. The results of numerical examples demonstrate the applicability and the accuracy of the proposed method for the nonlinear transient heat transfer analysis.

  • PDF