• Title/Summary/Keyword: 일회용

Search Result 296, Processing Time 0.023 seconds

Measurement of Specific Radioactivity for Clearance of Waste Contaminated with Re-186 for Medical Application (의료용 Re-186 오염폐기물의 규제해제를 위한 방사능측정)

  • Kim, Chang-Bum;Lee, Sang-Kyung;Jang, Seong-Joo;Kim, Jung-Min
    • Journal of radiological science and technology
    • /
    • v.40 no.4
    • /
    • pp.633-638
    • /
    • 2017
  • The amount of radioactive waste has been rapidly increased with development of radiation treatment in medical field. Recently, it has been a common practice to use I-131 for thyroid cancer, F-18 for PET/CT and Tc-99m for diagnosis of nuclear medicine. All the wastes concerned have been disposed of by means of the self-disposal method, for example incineration, after storage enough to decay less than clearance level. IAEA proposed criteria for clearance level of waste which depends on the individual ($10{\mu}Sv/y$) and collective dose (1 man-Sv/y), and concentration of each nuclide (IAEA Safety Series No 111-P-1.1, 1992 and IAEA RS-G-1.7, 2004). In this study, specific radioactivity of radioactive waste contaminated with Re-186 was measured to confirm whether it meets the clearance level. Re-186 has long half life of 3.8 days relatively and emits beta and gamma radiation, therefore it can be applied in treatment and imaging purposes. The specific radioactivity of contaminated gloves weared by radiation workers was measured by MCA(Multi-channel Analyzer) which was calibrated by reference materials in accordance with the measuring procedure. As a result, comparison evaluation of decay storage period between the half-life which was calculated by attenuation curve based on real measurement and physical half-life was considered, and it is showed that the physical half-life is longer than induced half-life. Therefore, the storage period of radioactive waste for self-disposal may be curtailed in case of application of induced half-life. The result of this study will be proposed as ISO standard.

Survey on a Disposal Method of Contact Lenses after Use (콘택트렌즈 사용 후 폐기처분에 대한 실태 조사)

  • Park, Il-nam;Kwon, Min-sun;Park, Ji-woong;Lee, Ki-Seok;Jung, Mi-A;Lee, Hae-Jung
    • The Korean Journal of Vision Science
    • /
    • v.20 no.4
    • /
    • pp.553-560
    • /
    • 2018
  • Purpose : To investigate a disposal method of disposing contact lenses and the recognition of environmental pollution by micro plastics which may be caused by the wrong disposal method of domestic contact lens wearers. Methods : Two hundred sixty one adults(124 males, 137 females, mean age $21.48{\pm}3.14years$) were participated in this study. They were given the questionnaire survey on contact lenses purchasing place, type of contact lenses, duration of wearing contact lenses, the disposal method of disposing contact lenses and the recognition of the occurrence of environmental pollution. Results : It appeared that eyeglass shop(50.0%) and contact lens shop(48.3%) were the main purchasing places, and the most common type of contact lenses were disposable lenses(38.5%) and daily wearing lenses(52.5%). On the duration of wearing contact lenses they answered more than 5 years(29.3%), less than 1 year (26.0%), less than 1 year to less than 3 years (26.0%), and on wearing a contact lens during a week they did 1-2 days (32.0%), 1 week (28.0%), 5-6 days (22.4%) and 3-4 days (17.6%). It was shown "no(78.3%)" and "yes(21.7%)" to the questionnaire of whether they received information or education about a disposal method at the place where the contact lens was purchased, and "no(87.5%)" and "yes(12.5%)" to the questionnaire of whether they received information or education from schools, public institutions or public media such as the internet. As for the disposal methods, landfill waste(45.6%), recycled garbage(29.6%), and drainage(16.8%) from the sink or toilet responded in order. Although men were more educated and informed about disposal than women (t=3.63189, p<0.00001), women were more aware of environmental pollution(t=2.44269, p=0.01605). Conclusion : In order to reduce the environmental pollution issue caused by the contact lens which does not decompose at the sewage treatment facility and become micro plastics, it is urgent to provide information about correct disposal methods after using contact lenses and to educate contact lens wearers.

Development of Continuous Monitoring Method of Root-zone Electrical Conductivity using FDR Sensor in Greenhouse Hydroponics Cultivation (시설 수경재배에서 FDR 센서를 활용한 근권 내 농도의 연속적 모니터링 방법)

  • Lee, Jae Seong;Shin, Jong Hwa
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.409-415
    • /
    • 2022
  • Plant growth and development are also affected by root-zone environment. Therefore, it is important to consider the variables of the root-zone environment when establishing an irrigation strategy. The purpose of this study is to analyze the relationship between the volumetric moisture content (VWC), Bulk EC (ECb), and Pore EC (ECp) used by plant roots using FDR sensors in two types of rockwool media with different water transmission characteristics, using the method above this was used to establish a method for collecting and correcting available root-zone environmental data. For the experiment, two types of rockwool medium (RW1, RW2) with different physical characteristics were used. The moisture content (MC) and ECb were measured using an FDR sensor, ECp was measured after extracting the residual nutrient solution from the medium using a disposable syringe in the center of the medium at a volumetric moisture content (VWC) of 10-100%. Then, ECb and ECp are measured by supplying nutrient solution having different concentration (distilled water, 0.5-5.0) to two types of media (RW1, RW2) in each volume water content range (0 to 100%). The relationship between ECb and ECp in RW1 and RW2 media is best suited for cubic polynomial. The relationship between ECb and ECp according to volume moisture content (VWC) range showed a large error rate in the low volume moisture content (VWC) range of 10-60%. The correlation between the sensor measured value (ECb) and the ECp used by plant roots according to the volumetric water content (VWC) range was the most suitable for the Paraboloid equation in both media (RW1, RW2). The coefficient of determination the calibration equation for RW1 and RW2 media were 0.936, 0.947, respectively.

Voltammetric Sensor Incorporated with Conductive Polymer, Tyrosinase, and Ionic Liquid Electrolyte for Bisphenol F (전도성고분자, 티로시나아제 효소 및 이온성 액체 전해질을 융합한 전압전류법 기반의 비스페놀F 검출 센서)

  • Sung Eun Ji;Sang Hyuk Lee;Hye Jin Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.258-263
    • /
    • 2023
  • In this study, conductive polymers and the enzyme tyrosinase (Tyr) were deposited on the surface of a screen printed carbon electrode (SPCE), which can be fabricated as a disposable sensor chip, and applied to the detection of bisphenol F (BPF), an endocrine disruptor with proven links to male diseases and thyroid disorders, using electrochemical methods. On the surface of the SPCE working electrode, which was negatively charged by oxygen plasma treatment, a positively charged conductive polymer, poly(diallyldimethyl ammonium chloride) (PDDA), a negatively charged polymer compound, poly(sodium 4-styrenesulfonate) (PSS), and another layer of PDDA were layered by electrostatic attraction in the order of PDDA, PSS, and finally PDDA. Then, a layer of Tyr, which was negatively charged due to pH adjustment to 7.0, was added to create a PDDA-PSS-PDDA-Tyr sensor for BPF. When the electrode sensor is exposed to a BPF solution, which is the substrate and target analyte, 4,4'-methylenebis(cyclohexa-3,5-diene-1,2-dione) is generated by an oxidation reaction with the Tyr enzyme on the electrode surface. The reduction process of the product at 0.1 V (vs. Ag/AgCl) generating 4,4'-methylenebis(benzene-1,2-diol) was measured using cyclic and differential pulse voltammetries, resulting in a change in the peak current with respect to the concentration of BPF. In addition, we compared the detection performance of BPF using an ionic liquid electrolyte as an alternative to phosphate-buffered saline, which has been used in many previous sensing studies. Furthermore, the selectivity of bisphenol S, which acts as an interfering substance with a similar structure to BPF, was investigated. Finally, we demonstrated the practical applicability of the sensor by applying it to analyze the concentration of BPF in real samples prepared in the laboratory.

The Evaluation of the Packaging Properties and Recyclability with Modified Acrylic Emulsion for Flexible Food Paper Coating (유연 종이 식품 포장재의 개질 아크릴 에멀젼 코팅 특성 및 재활용성 평가)

  • Myungho Lee;In Seok Cho;Dong Cheol Lee;Youn Suk Lee
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.3
    • /
    • pp.153-161
    • /
    • 2023
  • The worldwide effects of COVID-19 have led to a surge in online shopping and contactless services. The consumption pattern has caused the issues such as the environmental pollution together with the increase of plastic waste. Reducing the reliance on the petroleum based plastic use for the package and replacing it with environmentally friendly material are the simple ways in order to solve those problems. Paper is an eco-friendly product with high recyclability as the food packaging materials but has still poor barrier properties. A barrier coating on surface of the paper can be achieved with the proper packaging materials featuring water, gas and grease barrier. Polyethylene (PE) or polypropylene (PP) coatings which are generally laminated or coated to paper are widely used in food packaging applications to protect products from moisture and provide water or grease resistance. However, recycling of packaging containing PE or PP matrix is limited and costly because those films are difficult to degrade in the environment. This study investigated the recyclability of modified acrylic emulsion coating papers compared to PE and PP polymer matrixes as well as their mechanical and gas barrier properties. The results showed that PE or modified acrylic emulsion coated papers had better mechanical properties compared to the uncoated paper as a control. PE or PP coating papers showed strong oil resistance property, achieving a kit rating of 12. Those papers also had a significantly higher percentage of screen reject during the recycling process than modified acrylic coated paper which had a screen rejection rate of 6.25%. In addition an uncoated paper had similar value of a screen rejection rate. It may suggest that modified acrylic emulsion coating paper can be more easily recycled than PE or PP coating papers. The overall results of the study found that modified acrylic emulsion coating paper would be a viable alternative to suggest a possible solution to an environmental problem as well as enhancing the weak mechanical and poor gas barrier properties of the paper against moisture.

A Study of the Bracelets Excavated from Fifth-and Sixth-century Silla Kingdom Tombs: Physical Characteristics and Wearing Practices (신라 5~6세기 무덤 출토 팔찌에 대한 연구 -물리적·형태적 특성 및 착장 양상을 중심으로)

  • Yoon Sangdeok
    • Bangmulgwan gwa yeongu (The National Museum of Korea Journal)
    • /
    • v.1
    • /
    • pp.174-197
    • /
    • 2024
  • Personal ornaments made from precious metals that have been excavated from tombs dating to the Maripgan period (4th-6th century) of the Silla Kingdom are a major subject of analysis in the study of gender and hierarchy among the tomb occupants. Nonetheless, bracelets had been neglected until Ha Daeryong's recent research on determining gender through bracelets attracted attention. Accordingly, an examination and organization of the fundamental elements of Silla bracelets was needed. In response, this paper examines their physical characteristics, appearance, changes over time, and related wearing practices. The data for this study is derived from 176 bracelets, mostly made from silver or gold. Copper and glass bracelets are also included. Many of them were cast in a single-use earthen mold. Even the notched and protruding designs were created by casting rather than carving. Glass bracelets and bracelets with dragon designs were made using molds with round cavities. Excluding those produced using metal sheets, the rest of the bracelets are thought to have been cast in a mold with a long-string-shaped cavity and then bent round. After being bent, the two ends were either soldered together (closed type) or left open (open type). As demonstrated in the study by Lee Hansang, Silla bracelets evolved from plain rounded rod-shaped bracelets, such as the one excavated from the Northern Mound of Hwangnamdaechong Tomb, to versions with notched designs, and eventually to those with protruding designs, which gained popularity by the sixth century. The precedents of plain rounded rod-shaped bracelets are presumed to have been thin rod-shaped bracelets from the Proto-Three Kingdoms period. Bracelets need to be fit to the wrists so that they do not slip off easily when worn. The open type design was the preferable way to achieve this. Moreover, given the ductility of gold, silver, and copper, it seems that it would have been possible to stretch or deform them. In the end, I concluded that even if a bracelet is too small to pass man's hand, the open type could have been worn. Furthermore, if a closed-type bracelet were pressed into an oval shape, it would not be impossible for a man to put it on. When bracelets are divided according to their degree of deformability into type A (the open type) through type D, which is almost impossible to deform, type A is commonly found with wearers of thin hollow earrings, and types C and D (which are difficult to deform) are not found with wearers of thin hollow earrings, but only with wearers of thick hollow earrings. Therefore, it can be seen that men were allowed to wear bracelets, and the existing studies that differentiate between men and women based on the wearing of thin hollow earrings, thick hollow earrings, and swords remain valid.