• Title/Summary/Keyword: 일출

Search Result 181, Processing Time 0.028 seconds

Estimation of Soil CO2 Efflux from an Apple Orchard (사과 과수원에서의 토양 CO2 발생량 평가)

  • Lee, Jae-Man;Kim, Seung-Heui;Park, Hee-Seung;Seo, Hyeong-Ho;Yun, Seok-Kyu
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.2
    • /
    • pp.52-60
    • /
    • 2009
  • This study was conducted to quantify the soil respiratory $CO_2$ emission (SR) in an apple orchard and to determine its relationship with key environmental factors such as air temperature, soil temperature and soil moisture content. Experiment was made over the period from 23 April 2007 to 31 March 2008 in 'Fuji' apple orchard of National Institute of Horticultural and Herbal Science in Suwon, Gyeonggi-do, Korea. The SR was measured by using the automatic opening/closing chamber system based on a closed method. Diurnal variations in SR showed an increase around 0700 hours with increasing soil temperature, its peak between 1400 and 1500 hours, and then a gradual decrease thereafter. Daily variations in SR depended largely on soil and air temperatures over the year, ranging from 0.8 to 13.7 g $CO_2$ $m^{-2}d^{-1}$. During the rainy spell in summer (July$\sim$Autumn) with higher temperature and more precipitation, the SR was lower than that in the spring (May$\sim$June) with moderate temperature. The SR showed a significant exponential relationship with soil temperature ($r^2=0.800$) and air temperature ($r^2=0.805$), but not with soil moisture content ($r^2=0.160$). The $Q_{10}$ values of SR with annual soil temperature and air temperature were 2.0 and 1.9, respectively. The annually integrated SR was 19.6 ton $CO_2$ $ha^{-1}$.

Comparisons of Incompatible Element Contents between the Perilla frutescens var. japonica and Sesamum indicum in Keumsan Area (금산 지역 들깨와 참깨의 비호정성 원소 함량 비교)

  • Song, Suck-Hwan;Kim, Ill-Chool
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.1
    • /
    • pp.61-79
    • /
    • 2009
  • This study is for incompatible element contents of Perilla frutescens and Sesamum indicum from the Keumsan: biotite granite, phyllite and shale areas. In the soils, high elements are shown in the granite and phyllite areas, and in the areas of the Perilla frutescens. Positive correlations are distinctive within the granite for the Perilla frutescens, but the shale for the Sesamum indicum. These relationships can be explained with relative propositions of minerals containing the incompatible element. In the plants, high elements are shown in the shale and the Sesamum indicum are high in the comparisons of the same soil types. The low parts are mainly high. Regardless of the soil types, the lower and upper parts, respectively, are high in the Y, Zr and Rb contents for the Perilla frutescens, but, Ta, Nb, Th and U contents for the Sesamum indicum. Positive correlations are distinctive within plants of the phyllite. Comparing with the soil types, all HFS and Cs contents of the LFS in the plants are low with differences of several to hundred times, but high in the Sr contents with differences of several times. In the comparisons between plants and soil types, Y, Zr, Hf, Ta, Nb, Rb, and Sr of the phyllite and Th, U, Ba and Cs of the shale for the Perilla frutescens as well as Y, Zr, Hf, Rb, Sr, Ba and Cs of the phyllite and Ta, Nb, Th and U of the shale for the Sesamum indicum are chemically similar to the soils. In the comparisons of the each parts for the plant types, differences with the soils are big in the granite.

A Local Governments' Preferences in Selecting Modern Eight Scenic Landscapes (지자체가 선정한 현대팔경에 나타난 경관 선호 양상)

  • So, Hyun-Su
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.38 no.1
    • /
    • pp.92-102
    • /
    • 2020
  • The followings are the landscape preference aspects from the 816 landscapes(景, Kyung), which comprise the 78 modern Palkyungs, presented by the 78 local governments in Korea. First, the natural environment elements selected as Kyung(景), which are topographical landscapes, mostly consist of mountain elements such as mountains, terrace(臺), rocks and stones and water elements classified as rivers, oceans, and lakes. Natural elements also include old-growth and giant trees such as pines, ginkgos, Japanese cornels and fringe trees, tree-lined streets and forests, and plant elements such as azaleas, rhododendrons, lotuses, reeds, and silver grasses which provide seasonal landscapes. Second, more than half of Kyung, selected as human environment elements, are historical and cultural heritages such as graveyards, mountain fortresses, town fortresses, traditional villages, pavilion in villas, and temples. And it is followed by leisure tourism facilities such as traditional markets, exhibition halls, theme parks, beaches, and food streets, green-based structures such as trails, plazas, parks, and botanical gardens, and industrial heritages such as ranches, abandoned coal mines, stations, ports and bridges. Third, modern Palkyungs include objects not related to the views such as local representative facilities, regional products, and festivals. Fourth, although most of the modern Palkyungs consist of eight, some include 20, 38, or 100 in order to increase the number of objects of public relations. Fifth, a certain local government makes two modern Palkyungs with different subjects by introducing traditional Palkyung and modern Palkyung altogether. In this case, it presents several modern Palkyungs like by selecting Palkyungs in a limited area. Furthermore, one Palkyung includes numerous place names at a time in some cases. Sixth, Sosangjeonhyeong(瀟湘典型)-style modern Palkyung uses 'NakAn(落雁)' as the name of Kyung. Sosangyusahyeong(瀟湘類似型)-style modern Palkyung expresses 'Hyojong(曉鐘)' and landscape of glow of the setting sun, sunset, night view, dawn, sunrise and depicts cloud, sunset, moon, and snow. There are many Myeongsocheheomhyeong(名所體驗型)-style Palkyungs exhibiting the behavior of tourism and Myeongseunghyeong(名勝型)-style Palkyungs raising the awareness only by the names of the places. Seventh, modern Palkyung's naming styles are diverse, such as using only four letters instead of specifying Kyungmul(景物) or Kyungsaek(景色) in combination with Chinese characters or adding modifiers specializing in places.

Strategies about Optimal Measurement Matrix of Environment Factors Inside Plastic Greenhouse (플라스틱온실 내부 환경 인자 다중센서 설치 위치 최적화 전략)

  • Lee, JungKyu;Kang, DongHyun;Oh, SangHoon;Lee, DongHoon
    • Journal of Bio-Environment Control
    • /
    • v.29 no.2
    • /
    • pp.161-170
    • /
    • 2020
  • There is systematic spatial variations in environmental properties due to sensitive reaction to external conditions at plastic greenhouse occupied 99.2% of domestic agricultural facilities. In order to construct 3 dimensional distribution of temperature, relative humidity, CO2 and illuminance, measurement matrix as 3 by 3 by 5 in direction of width, height and length, respectively, dividing indoor space of greenhouse was designed and tested at experimental site. Linear regression analysis was conducted to evaluate optimal estimation method in terms with horizontal and vertical variations. Even though sole measurement point for temperature and relative humidity could be feasible to assess indoor condition, multiple measurement matrix is inevitably required to improve spatial precision at certain time domain such as period of sunrise and sunset. In case with CO2, multiple measurement matrix could not successfully improve the spatial predictability during a whole experimental period. In case with illuminance, prediction performance was getting smaller after a time period of sunrise due to systematic interference such as indoor structure. Thus, multiple sensing methodology was proposed in direction of length at higher height than growing bed, which could compensate estimation error in spatial domain. Appropriate measurement matrix could be constructed considering the transition of stability in indoor environmental properties due to external variations. As a result, optimal measurement matrix should be carefully designed considering flexibility of construction relevant with the type of property, indoor structure, the purpose of crop and the period of growth. For an instance, partial cooling and heating system to save a consumption of energy supplement could be successfully accomplished by the deployment of multiple measurement matrix.

Effect of Supplementary Radiation on Growth of Greenhouse-Grown Kales (온실재배 케일의 생장에 미치는 보광효과)

  • Heo, Jeong-Wook;Kim, Hyeon-Hwan;Lee, Kwang-Jae;Yoon, Jung-Boem;Lee, Joung-Kwan;Huh, Yoon-Sun;Lee, Ki-Yeol
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.1
    • /
    • pp.38-45
    • /
    • 2015
  • BACKGROUND: For commercial production of greenhouse crops under shorter day length condition, supplementary radiation has been usually achieved by the artificial light source with higher electric consumption such as high-pressure sodium, metal halide, or incandescent lamps. Light-Emitting Diodes (LEDs) with several characteristics, however, have been considered as a novel light source for plant production. Effects of supplementary lighting provided by the artificial light sources on growth of Kale seedlings during shorter day length were discussed in this experiment. METHODS AND RESULTS: Kale seedlings were grown under greenhouse under the three wave lamps (3 W), sodium lamps (Na), and red LEDs (peak at 630 nm) during six months, and leaf growth was observed at intervals of about 30 days after light exposure for 6 hours per day at sunrise and sunset. Photosynthetic photon flux (PPF) of supplementary red LEDs on the plant canopy was maintained at 0.1 (RL), 0.6 (RM), and $1.2(RH){\mu}mol/m^2/s$ PPF. PPF in 3 W and Na treatments was measured at $12{\mu}mol/m^2/s$. Natural light (NL) was considered as a control. Leaf fresh weight of the seedlings was more than 100% increased under the 3 W, Na and RH treatment compared to natural light considering as a conventional condition. Sugar synthesis in Kale leaves was significantly promoted by the RM or RH treatment. Leaf yield per $3.3m^2$ exposed by red LEDs of $1.2{\mu}mol/m^2/s$ PPF was 9% and 16% greater than in 3W or Na with a higher PPF, respectively. CONCLUSION: Growth of the leafy Kale seedlings were significantly affected by the supplementary radiation provided by three wave lamp, sodium lamp, and red LEDs with different light intensities during the shorter day length under greenhouse conditions. From this study, it was suggested that the leaf growth and secondary metabolism of Kale seedlings can be controlled by supplementary radiation using red LEDs of $1.2{\mu}mol/m^2/s$ PPF as well as three wave or sodium lamps in the experiment.

A Study on the Landscape Elements and Distribution Characteristics of Mount Tai Appearing in Poems (시문(詩文)에 나타난 태산(泰山) 경관요소 및 분포특성 연구)

  • Yu, Ying;Jung, Taeyeol
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.6
    • /
    • pp.80-92
    • /
    • 2021
  • Mount Tai, with an elevation of 1,532 meters, has a reputation as 'The Most Revered of the Five Sacred Mountains(五嶽獨尊)', despite not being the highest mountain in China. The literati of the past dynasties created a multitude of works based on the landscape of Mount Tai. Traditional literature is a part of national culture that directly reflects the national characteristics and styles, and is an important part of humanities, which can be linked to landscapes. The purpose of this study is to investigate the landscape elements and characteristics of Mount Tai by analyzing the landscape types and elements and the Kernel Density, Mean Center and Standard Deviational Ellipse of the landscape elements appearing in the representative poems of traditional literature. The research results of this study are summarized as follows. First, Mount Tai is a scenic spot dominated by human activities, different from the natural landscape of prior research related to scenic spots. Second, among the landscape elements of Mount Tai, the importance of "sunrise", "cyan", "towering" and "majestic", "Divine Dragon" is confirmed, symbolizing the hope, brightness, vitality, national stability and prosperity represented by Mount Tai, which can explain the leadership position of Mount Tai. Third, it can be found from the poems about Mount Tai that various landscape elements were embodied in belief (the behavior of gods or emperors) in the Pre-Qin, Sui and Tang dynasties, while in modern times, landscape elements are shown by action (climbing and looking far into distance), so it can be said that the landscape elements have changed from belief landscapes to experience landscapes. Fourth, the spatial distribution of landscape elements in the past dynasties was widely distributed in the Daiding(岱頂). Approaching the modern times, the mean center moved from south outside of Mount Tai to the summit of Mount Tai, and the spatial distribution changed from a widely scattered distribution to narrow linear distribution centered on Mount Tai. The present study is of great significance to provide key factors or spaces for future landscape protection and restoration of Mount Tai.

A Method of Reproducing the CCT of Natural Light using the Minimum Spectral Power Distribution for each Light Source of LED Lighting (LED 조명의 광원별 최소 분광분포를 사용하여 자연광 색온도를 재현하는 방법)

  • Yang-Soo Kim;Seung-Taek Oh;Jae-Hyun Lim
    • Journal of Internet Computing and Services
    • /
    • v.24 no.2
    • /
    • pp.19-26
    • /
    • 2023
  • Humans have adapted and evolved to natural light. However, as humans stay in indoor longer in modern times, the problem of biorhythm disturbance has been induced. To solve this problem, research is being conducted on lighting that reproduces the correlated color temperature(CCT) of natural light that varies from sunrise to sunset. In order to reproduce the CCT of natural light, multiple LED light sources with different CCTs are used to produce lighting, and then a control index DB is constructed by measuring and collecting the light characteristics of the combination of input currents for each light source in hundreds to thousands of steps, and then using it to control the lighting through the light characteristic matching method. The problem with this control method is that the more detailed the steps of the combination of input currents, the more time and economic costs are incurred. In this paper, an LED lighting control method that applies interpolation and combination calculation based on the minimum spectral power distribution information for each light source is proposed to reproduce the CCT of natural light. First, five minimum SPD information for each channel was measured and collected for the LED lighting, which consisted of light source channels with different CCTs and implemented input current control function of a 256-steps for each channel. Interpolation calculation was performed to generate SPD of 256 steps for each channel for the minimum SPD information, and SPD for all control combinations of LED lighting was generated through combination calculation of SPD for each channel. Illuminance and CCT were calculated through the generated SPD, a control index DB was constructed, and the CCT of natural light was reproduced through a matching technique. In the performance evaluation, the CCT for natural light was provided within the range of an average error rate of 0.18% while meeting the recommended indoor illumination standard.

Effect of Shading and Supplemental Lighting for Greenhouse Cultivation of Cucumber in Summer Season (하절기 오이 온실재배 시 차광 및 보광 효과)

  • Jin Yu;Ji Hye Yun;So Yeong Hwang;Eun Won Park;Jeong Hun Hwang;Hyeong Eun Choi;Jeong Kil Koo;Hee Sung Hwang;Seung Jae Hwang
    • Journal of Bio-Environment Control
    • /
    • v.32 no.3
    • /
    • pp.226-233
    • /
    • 2023
  • High solar radiation in summer season causes excessive respiration of crops and reduces photosynthesis. In addition, the rainy season, which mainly occurs in summer, causes a low light condition inside the greenhouse. A low light condition can reduce crop growth and yield. This study was conducted to evaluate the effect of shade and supplemental lighting on the growth and yield of cucumber during summer season. Cucumber grafted seedlings were transplanted in two plastic greenhouses on August 30, 2022. To reduce the light intensity inside the greenhouse, a 50% shading screen was installed in one greenhouse. Supplemental lighting was conducted from September 7, 2022 to October 20, 2022. HPS (high-pressure sodium lamp), W LED (white LED, red:green:blue = 5:3:2), and RB LED (combined red and blue LED, red:blue = 7:3) were used for supplemental lighting sources, and non-treated (nonsupplemental lighting) was as the control. The supplemental lighting was conducted before sunrise and after sunset for 2 hours with a photosynthetic photon flux density of 150 ± 20 µmol·m-2·s-1. The plant height, leaf length, leaf width, and SPAD value tended to increase in the shading group. RB LED increased stem diameter regardless of shading treatment. Fresh and dry weights of fruits were not significantly different in shading and supplemental lighting. Average fresh weight of fruits was not significantly different among supplemental lighting as the harvest date passed. In conclusion, in this study 50% shade treatment significantly improved the growth of cucumber during the summer season. In addition, the growth and fruit characteristics are better than the control without supplemental lighting. This study can be used as basic research data for applying supplemental lighting technology to cucumber cultivation.

Determination of Total CO2 and Total Alkalinity of Seawater Based on Thermodynamic Carbonate Chemistry (해수중의 총이산화탄소와 총알칼리도 분석을 위한 탄산염 화학 이론 및 측정방법)

  • Mo, Ahra;Son, Juwon;Park, Yongchul
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • To evaluate accuracy and precision of determination of total alkalinity ($Alk_T$) and carbon dioxide ($TCO_2$) derived from present study, experiment was applied with $CO_2$ CRM (Batch 132, Scripps Institution of Oceanography; $Alk_T=2229.24{\pm}0.39{\mu}mol/kg$, $TCO_2=2032.65{\pm}0.45{\mu}mol/kg$). As the result, average concentration of $Alk_T$ and $TCO_2$ was $2354.09{\mu}mol/kg$ (~5.6% difference with $CO_2$ CRM) and $2089.60{\mu}mol/kg$ (~2.3% difference with $CO_2$ CRM), respectively. For previous method (Gran Titration) by addition $NaHCO_3$ to deionized water($Alk_T$ $2023.33{\mu}mol/kg$), average concentration was $2193.39{\mu}mol/kg$ (sd=57.15, n=7). Whereas, average concentration was $2017.02{\mu}mol/kg$ (sd=10.98, n=7) for the present study. Recovery yield experiments of total alkalinity in deionized water and seawater were implemented by addition of $NaHCO_3$. The recovery yield of deionized water in the range 0 to $4952.39{\mu}mol/kg$ was 100.8% ($R^2$=0.999), and seawater in the range 0 to $2041.32{\mu}mol/kg$ was 102.3% ($R^2$=0.999). Comparison of $pCO_2$ sensor (PSI $CO_2-Pro^{TM}$) with present method showed very meaningful correlation coefficient ($R^2$=0.977) in the range of 427 to $705{\mu}atm$ and 9.16 to $15.24{\mu}mol/kg$ throught elapsed time for two weeks. Field experiment of diurnal variation of total carbon dioxide was accomplished at Sachon harbor in the coastal waters of East Sea of Korea. Concentration of $Alk_T$ and $TCO_2$ was increased during night, and decreased during daylight hours. The results showed mirror type between $TCO_2$ and dissolved oxygen, which was attributable to photosynthesis and respiration of phytoplankton. Also, open ocean field study was performed to obtain vertical profile of $Alk_T$ and $TCO_2$ in C-C zone (Clarion-Clipperton Fracture Zone), Northeastern Pacific. Average concentrations of $Alk_T$ in the surface mixed layer (0~60 m) and deeper layer below 200 m were $2422.38{\mu}mol/kg$ (sd=78.73, n=20) and $2465.87{\mu}mol/kg$ (sd=57.68, n=103), respectively. And average concentrations of $TCO_2$ were $2134.47{\mu}mol/kg$ (sd=65.4, n=20) and $2431.87{\mu}mol/kg$ (sd=65.02, n=103) in the same depth ranges such as $Alk_T$. Vertical distributions of $Alk_T$ and $TCO_2$ concentrations tended to increase with depth, and analyzed concentrations showed slightly higher than those of previous studies in this area.

Semantic Interpretation of the Name "Cheomseongdae" (첨성대 이름의 의미 해석)

  • Chang, Hwalsik
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.4
    • /
    • pp.2-31
    • /
    • 2020
  • CheomSeongDae (瞻星臺) is a stone structure built in Gyeongju, the former Silla Dynasty capital, during the reign of Queen Seondeok (632~647AD). There exist dozens of hypotheses regarding its original purpose. Depending on to whom you ask, the answer could be a celestial observatory, a religious altar, a Buddhist stupa, a monumental tower symbolizing scientific knowledge, and so on. The most common perception of the structure among lay people is a stargazing tower. Historians, however, have suggested that it was intended as "a gateway to the heavens", specifically the Trāyastriṃśa or the second of the six heavens of Kāmadhātu located on the top of Mountain Sumeru. The name "Cheom-seong-dae" could be interpreted in many different ways. 'Cheom (瞻)' could refer to looking up, staring, or admiring, etc.; 'Seong (星)' could mean a star, heaven, night, etc.; and 'heaven' in that context can be a physical or religious reference. 'Dae (臺)' usually refers to a high platform on which people stand or things are placed. Researchers from the science fields often read 'cheom-seong' as 'looking at stars'; while historians read it as 'admiring the Trāyastriṃśa' or 'adoring Śakra'. Śakra is said to be the ruler of Trāyastriṃśa' who governs the Four Heavenly Kings in the Cāturmahārājika heaven, the first of the six heavens of Kāmadhātu. Śakra is the highest authority of the heavenly kings in direct contact with humankind. This paper examined the usages of 'cheom-seong' in Chinese literature dated prior to the publication of 『Samguk Yusa』, a late 13th century Korean Buddhist historical book that contains the oldest record of the structure among all extant historical texts. I found the oldest usage of cheom-seong (瞻星臺) in 『Ekottara Āgama』, a Buddhist script translated into Chinese in the late 4th century, and was surprised to learn that its meaning was 'looking up at the brightness left by Śakra'. I also found that 'cheom-seong' had been incorporated in various religious contexts, such as Hinduism, Confucianism, Buddhist, Christianism, and Taoism. In Buddhism, there was good, bad, and neutral cheom-seong. Good cheom-seong meant to look up to heaven in the practice of asceticism, reading the heavenly god's intentions, and achieving the mindfulness of Buddhism. Bad cheom-seong included all astrological fortunetelling activities performed outside the boundaries of Buddhism. Neutral cheom-seong is secular. It may help people to understand the nature of the physical world, but was considered to have little meaning unless relating to the spiritual world of Buddhism. Cheom-seong had been performed repetitively in the processes of constructing Buddhist temples in China. According to Buddhist scripts, Queen Māyā of Sakya, the birth mother of Gautama Buddha, died seven days after the birth of Buddha, and was reborn in the Trāyastriṃśa heaven. Buddha, before reaching nirvana, ascended from Jetavana to Trāyastriṃśa and spent three months together with his mother. Gautama Buddha then returned to the human world, stepping upon the stairs built by Viśvakarman, the deity of the creative power in Trāyastriṃśa. In later years, King Asoka built a stupa at the site where Buddha descended. Since then, people have believed that the stairway to the heavens appears at a Buddhist stupa. Carefully examining the paragraphic structure of 『Samguk Yusa』's records on Cheomseongdae, plus other historical records, the fact that the alignment between the tomb of Queen Seondeok and Cheomseongdae perfectly matches the sunrise direction at the winter solstice supports this paper's position that Chemseongdae, built in the early years of Queen SeonDeok's reign (632~647AD), was a gateway to the Trāyastriṃśa heaven, just like the stupa at the Daci Temple (慈恩寺) in China built in 654. The meaning of 'Cheom-seong-dae' thus turns out to be 'adoring Trāyastriṃśa stupa', not 'stargazing platform'.