• Title/Summary/Keyword: 일축 압축

Search Result 694, Processing Time 0.027 seconds

Analysis of Dynamic and Static Elastic Modulus of In-situ Marine Concrete (현장 해양 콘크리트의 동탄성계수와 정탄성계수 분석)

  • Han, Sang-Hun;Park, Woo-Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.6
    • /
    • pp.437-443
    • /
    • 2009
  • Impact echo method estimating the soundness of concrete measures the dynamic elastic modulus of specimens which are different with static elastic modulus tested by uni-axial compression test. Thus, this paper investigates the relationships between dynamic and static elastic modulus based on in-situ concrete cores. Also, dynamic elastic modulus was compared with compressive strength. Concrete cores were obtained from about 20 to 70 years concrete structures at three different harbors which were Incheon, Wando, and Masan in Korea. In order to investigate the influence of exposure condition on the relationship, air zone, splash zone, and tidal zone were selected. Different harbors showed the different relationships between dynamic and static elastic modulus, but exposure conditions have no influence on the relationship between dynamic and static elastic modulus. Also, the relationship between dynamic elastic modulus and compressive strength has the same tendency as the relationship between dynamic and static elastic modulus. The relationship equations were proposed to estimate the relationships properly.

Strength Parameters and Shear Behaviors of North-Cheju Basalt Rubble Using Large-scale Triaxial Test (대형삼축압축시험을 이용한 북제주현무암 사석재의 강도정수 및 전단거동)

  • 정철민;김종수;채영수
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.2
    • /
    • pp.147-160
    • /
    • 2002
  • According to the Korean Design Code for port and harbor facilities, bearing capacity of rubble mound under eccentric and inclined load is calculated by the simplified Bishop method, and strength parameters are recommended to be c=0.2kg/$cm^2$ and \phi=35^P\circ}$ fur standard rubble if the compressive strength of parent rock is greater than 300kg/$cm^2$, according to research results by Junichi Mizukami(1991). But this facts have never been verified in Korea because there was no large-scale triaxial test apparatus until 2000 in Korea. For the first time in Korea, the large-scale triaxial test(sample diameter 30cm ; height 60cm) on the rubble originated from porous basalt rock in North-Cheju was accomplished. Then strength parameters for basalt rubble produced in North-Cheju are recommended to be c:0.3kg/$cm^2\; and \phi=36^{\circ}$ if the compressive strength of parent rock is greater than 400kg/$cm^2$. And the shear behavior characteristics of rubble, represented as particle breakage and dilatancy, are investigated.

Axial Compression of Stub Columns for Concrete-filled Square Steel Tubes (일축 압축력을 받는 콘크리트충전 각형강관 단주의 구조적 거동)

  • Yoo, Yeong-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.617-624
    • /
    • 2021
  • Concrete-filled steel tubular columns can improve the strength and deformation capacity of structures, thereby enabling the development of efficient structures. The Korean design standard (KDS41) regarding concrete-filled steel tubular structures, established by the architectural institute of Korea in 2005, was revised in 2009 and 2016. The objective was to understand the compressive strengths and deformation capacity of stub columns for concrete-filled square steel tubes under uniaxial compression and validate the KDS41's standard code for necessary corrections. Experiments were conducted on 26 specimens with parameters, such as the width-thickness ratio of cold-formed square tubes. The following values of the stub columns for concrete-filled square steel tubes were obtained: compressive strengths, relationship between the axial load and axial displacement, and failure modes. An analysis of these results enabled an understanding of the concrete-filled effect and the influence of the wide-thickness ratio. The compressive strengths of filled concrete saw a 9% increase compared to a state of uniaxial stress, which must be noted in a future edition of KDS41. After benchmarking the results regarding square steel tubes generated by cold forming to the guidelines provided by the KDS41, the KDS41's value of 2.26 for the limiting width-to-thickness ratio for the compact section was found to be inflated. With a safety concern, this paper proposes a more conservative value of 1.35.

Mechanical Model for Failure of Compressed Concrete in Reinforced Concrete Beams (철근 콘크리트 보에서 압축력을 받는 콘크리트의 파괴에 대한 역학적 모델)

  • 한국콘크리트학회
    • Magazine of the Korea Concrete Institute
    • /
    • v.16 no.4 s.81
    • /
    • pp.70-77
    • /
    • 2004
  • 콘크리트 구조물에 대한 많은 기준들의 요건에 따르면, 휨을 받는 철큰 콘크리트(RC) 보의 압축부에서의 응력은 일반적으로 일축의 응력-변형을 관계를 이용하여 계산한다. 이와 같은 접근은 가끔씩 압축력을 받는 콘크리트에서 부서짐이 발성할 때 보의 구조적 거동을 재현하지 못할 수 있다. 결과적으로, RC 구조물의 지지력과 그들의 연성은 근사적으로 평가된다. 본 논문에서는 압축을 받고 있는 콘크리트의 postpeak 거동은 활동면을 이용하여 모델링되었다. 이 활동 면의 모멘트-곡률곡선에서 연화부분에 그 원인이 있다. 제안된 활동현상의 수학적 표현은 압축력을 받는 콘크리트(즉, 연화부분의 거동이 압축영역의 크기와 변형률구배(곡배)에 의존하는)에 있어서 특정한 응력-변형률 관계를 정의하는 것이 얼마나 어려운지를 보여주고 있다.

합성 전단벽에 대한 대각 압축 응력장 접근법

  • Lee, Eo-Jin;Hong, Sung-Gul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.5-6
    • /
    • 2010
  • In this study, assuming that there is a diagonal uniaxial compression field in combination with triangular homogeneous stress fields in the cracked concrete wall and a tensile stress of a steel plate occurs in the perpendicular to the direction of the diagonal compression field, an ultimate shear strength of a slender composite shear wall is estimated.

  • PDF

Analysis on the Relationship of Geotechnical Strength Parameters in the Marine Clay (해성점토의 지반 강도정수 상관성 분석)

  • Heo, Yol;Kwon, Seonwuk;Lee, Cheokeun;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.7
    • /
    • pp.33-43
    • /
    • 2010
  • The physical characteristics of the marine clay in the Korean Peninsula, specifically Pusan areas of the south coast of Korea, were previously studied and reliable data from harbor construction projects were used for the relationship analysis of geotechnical strength parameters. The sample of marine clay classified to ML, MH, CL, CH and ML-CL from USCS were included for the analysis while the samples classified to SC were excluded in order to raise the degree of data analysis. Geotechnical strength properties, such as undrained shear strength, sensitivity ratio, and effective friction angle were analyzed and evaluated using the data obtained from unconfined compression test, triaxial compression test and field vane test. Abnormal values were extracted through statistical analysis. Moreover, the reliability of the results was improved by performing the evaluation of disturbance. Linear regression analysis was used for the relationship analysis, between undrained shear strength and depth. The relationship equation between undrained shear strength and depth was derived from the analysis of unconfined and triaxial compression test data of samples obtained at same location. Consequently, The relationship between depth and undrained shear strength is $S_u=0.015148D+0.04624$ and the undrained shear strength derived from the triaxial compression test was estimated to be about 1.26 of derived from the unconfined compression test.

Characteristics Strength of Silicasol-cement Grout Material for Ground Reinforcement (지반보강용 실리카졸 약액의 강도특성에 대한 연구)

  • Kim, Hyunki;Kim, Younghun;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.9
    • /
    • pp.47-53
    • /
    • 2010
  • This study was made on the fact that the compressive strength characteristic of the recently developed alkali silica-sol chemical grout material was examined, whose grout material used for this study was designed to understand its strength property through the uniaxial compressive strength test(homo-gel, sand-gel), permeability test, deflection strength test, etc. In order to compare with the engineering characteristics regarding alkali silica-sol grout material and sodium silicate grout material. The uniaxial compressive strength of silica-sol grout material was identified to be increased more than 3~5 times than sodium silicate grout material at the early stage(within 72 hours). When comparing with the uniaxial compressive strengths of Sand-gel and Homo-gel at the material age of 28 days in case of silica-sol grouting material the strength of Sand-gel was measured to be about 1.3 times higher than Homo-gel. In case of silica-sol, it is assumed to have the property to exert high strength when it is actually grouted into the ground. As a result of permeability test it is judged that it is possible to apply the silica-sol to the site in the place requiring the water cut-off as the silica-sol. As a result of testing the strength at the material age of 28 days of grouting-use silica-sol showed more than 3 times' difference than the sodium silicate grouting material.

Geotechnical Characteristics of Fly Ash Containing High Content of Unburned Carbons Reinforced with Fibers and Sand (섬유/모래로 보강된 미연소탄소탄소 고함량 플라이애쉬의 지반공학적특성)

  • Yoon, Boyeong;Lee, Changho;Choo, Hyunwook;Lee, Woojin
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.4
    • /
    • pp.35-46
    • /
    • 2017
  • Most of high carbon fly ashes (HCFA) are discarded in landfills with high costs due to low recycling rate. This study aims to explore the geotechnical behaviors of HCFA mixtures reinforced with fiber and sand. A series of compaction test, unconfined compressive strength test and modified 1D consolidation test with bender element were performed. Specimens were prepared at their optimal moisture contents based on the results of compaction tests. The results of this study demonstrate that the inclusion of fibers to the matrix of HCFA increases unconfined compressive strength (UCS), strain at UCS, and maximum shear modulus ($G_{max}$) at a given void ratio. Reinforcement with sand increases UCS of HCFA; while the strain at UCS is irrelevant with sand fractions. Sand particles may disrupt the direct contacts between HCFA particles at low sand content, resulting in a decrease in $G_{max}$. However, it can be expected that the mixtures with sand content larger than 20% are in dense state; thus, $G_{max}$ of HCFA reinforced with sand shows greater value than that of unreinforced HCFA compacted with the same energy. Regardless of types of reinforcement, the compression index ($C_c$) of both fiber and sand reinforced HCFA is mainly determined by initial void ratio.

Application of Artificial Neural Networks for Prediction of the Flow and Strength of Controlled Low Strength Material (CLSM의 플로우 및 일축압축강도 예측을 위한 인공신경망 적용)

  • Lim, Jong-Goo;Kim, Yeon-Joong;Chun, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.1
    • /
    • pp.17-24
    • /
    • 2011
  • The characteristics of flow and strength of CLSM depend on the combination ratio including the fly ash, pond ash, cement, water quantity and etc. However, it is very difficult to draw the mechanism about the flow, strength and the mixing ratio of each components. Therefore, the method of calculation drawing the flow about the component ratio of CLSM and compression strength value is needed for the valid practical use of CLSM. To verify the efficiency of artificial neural network, new data which were not used for establishing the model were predicted and compared with the results of laboratory tests. In this research, it was used to evaluate the learning efficiency of the artificial neural network model and the prediction ability by changing the node number of hidden layer, learning rate, momentum, target system error and hidden layer. By using the results, the optimized artificial neural network model which is suitable for a flow and compressive strength estimate of CLSM was determined.