• Title/Summary/Keyword: 일축강도시험

Search Result 425, Processing Time 0.026 seconds

Engineering Characteristics of Light-weight Foamed CLSM using Coal Ash According to Final Mixing Time and Dilution Ratio (석탄회를 활용한 경량기포 저강도 고유동화재의 최종비빔시간과 희석비에 따른 공학적 특성)

  • Lee, Jong Hwi;Na, Jeong Hum;Lee, Chang Ki;Chun, Byung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1C
    • /
    • pp.17-25
    • /
    • 2012
  • CLSM (Controlled Low Strength Material) using coal ash, which has the advantages of self-leveling, self-compacting, flowability, easy re-excavation, has been developed. In this study, CLSM additionally mixed with foaming agent for structural backfill material, aimed at lightness of materials, was developed called light-weight foamed CLSM. As the basic study of this material, to determine the optimum final mixing time and dilution ratio of existing light-weight foamed CLSM, flow, slurry unit weight and unconfined compressive strength test according to each impact factor were performed at the standard mix proportion. As the results of tests, CASE N (Final mixing time 4 min, dilution ratio 2%), CASE O (Final mixing time 3 min, foam agents ratio 3%, dilution ratio 2%) were satisfied with the standard of flow test (above 20cm), slurry unit weight test (12~15 $kN/m^3$) and unconfined compressive strength test (800 kPa~1200 kPa). These results will indicate the standard optimum final mixing time and dilution ratio of light-weight foamed CLSM for structural backfill.

Characteristics of Cyclic Drying-Wetting on Strength of Solidified Soil Mixed Porosity Silica (다공성 실리카를 혼합한 경화토의 건습반복 강도특성)

  • Kim, Donggeun;Bang, Seongtaek;Oh, Sewook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.10
    • /
    • pp.29-34
    • /
    • 2014
  • In order to examine strength properties depended on climate changes of solidified soil amended by porosity silica which enhance harms of cement, this study conducts a wetting and drying repetition test and then, attempts to verify strength properties before and after solidified soil gets environmental influence. Test pieces for the unconfined compression test changed the mixing ratio of solidified soil compared to mixed soil weigh to 5 %, 10 % and 15 %. For each step, it was created by mixing 0.5 %, 1.0 % and 1.5 % of wood chips, and curing period for 7, 14, and 28 days. Then, the wetting and drying repetition process was repeated 0, 3, 6, and 12 cycles to analyze mechanical properties. To also evaluate changes of relative dynamic elastic modulus before and after the wetting and drying, dynamic elastic modulus tests were conducted when each cycle was completed.

Application of Paper Sludge Ash-Stabilized Soft Ground for Subgrade Soil (제지애쉬 고화제로 안정처리된 연약지반의 도로노상토 적용에 관한 연구)

  • Shin, Eunchul;Park, Sooyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.6
    • /
    • pp.13-22
    • /
    • 2018
  • The southwestern part of Korean Peninsula, which length is about 13,000 km, is largely formed with soft cohesive soil ground and when it is developed, the low bearing capacity and excessive settlement of soft ground give many problems. In particular, a lot of clayey soil is deserted due to high moisture content and weakness, and areas formed with soft ground. In this study it was performed unconfined compression test, CBR tests, laboratory frost heaving test, and wheel tracking test in order to determine the optimum mixture ratio of paper sludge ash added chemical stabilizer with soft soil for consideration of its frost heaving and strength characteristics. As a results of the above experiments, when the soft soil is mixed with 6% of chemical stabilizer to improve the soft soil for utilizing as a subgrade soil material. It is satisfied the quality standard of fill materials, and the results of this research are expected to be used as an appropriate usage standard for utilization of on-site soil generated.

Permeability and strength characteristics of Self-Sealing and Self-Beating materials as landfill liners (매립지 차수재로서 자가치유재의 투수 및 강도특성)

  • 장연수;문준석
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.1
    • /
    • pp.41-51
    • /
    • 2002
  • Recently, domestic waste landfills are constructed sometimes on seashore area to provide large landfill area. In order to strengthen the foundation of landfills and to prevent the infiltration of leachate through the bottom, many cases of constructing cement hardened liners on seashore clays are found. In these cases, it is possible to have cracks in the hardened liners due to settlement with waste load since the stiffness of the hardened liner Is greater than that of clay liners. In this study, the capability of Self-Sealing and Self-Healing (SSSH) liner made with a seashore clay in the metropolitan landfill to prevent the percolation of water and leachate is examined using flexible-wall permeameter test and using uniaxial compression test. Applicability of SSSH to weathered granitic soil is also examined for self-sealing capabilities. The result of Flexible permeameter test for SSSH with the seashore clay showed that permeability obtained was lower than permeability criteria of Korean waste management law. The permeability and strength characteristics of SSSH with granitic soil and bentonite showed better results than with the seashore clay.

Field Appliciability Evaluation of Eco-friendly Mixed Soil (친환경 혼합토의 현장적용성 평가)

  • Park, Kyungsik;Oh, Sewook;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.2
    • /
    • pp.17-25
    • /
    • 2014
  • In the present study, it were performed an unconfined compression test and a field applicability test according to a mixed ratio of SS, soil type and curing period to analyze strength and deformation characteristic in order to evaluate engineering characteristics of soil mixed pavements using the eco-friendly soil stabilizer (SS). The test results revealed that SS mixed soil shows fast strength development at the initial curing time while 28-day strength amounted for 97% of the final strength. Furthermore, coarse-grained dredged sand (DS) and weathered granitic soil (WGS) have a larger ratio of deformation coefficient with respect to unconfined compressive strength than fine-grained dredged clay (DC) and organic soil (OS). Moreover, a comparison test between natural and forced drying conditions was conducted and test result showed 54% to 67% of strength degradation while having 55% to 63% of strength degradation in the freezing and thawing test result. Finally, a repeated loading test result showed that DS experiences up to 35% of strength reduction compared to initial strength under 10,000 times loading in maximum. Thus, it was validated that an appropriate amount of fine-grained sand is necessary to secure resistance capability to repeated loading.

Study on Characteristics of Controlled Low Strength Material Using Time Domain Reflectometry (시간영역반사법을 이용한 유동성 채움재의 특성 연구)

  • Han, Woojin;Lee, Jong-Sub;Byun, Yong-Hoon;Cho, Samdeok;Kim, Juhyong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.4
    • /
    • pp.33-37
    • /
    • 2016
  • The hydration process of Controlled Low Strength Material (CLSM) used for backfill is the primary factor to determine the construction period. The objective of this study is to monitor the hydration process of CLSM using the Time Domain Reflectometry (TDR) and to establish the relationship between dielectric constant and compressive strength. The CLSM specimen is composed of cement, flyash, silt, sand, accelerator, and water. The material characteristics of the CLSM including flow, unit weight, compressive strength are investigated. To measure the dielectric constant of the CLSM during the curing time, TDR probe incorporated with a mold and a reflectometer are used. Experimental results show that the dielectric constant remains constant at early stage, and then decreases as the curing time increases. In addition, the dielectric constant is related to the compressive strength in inverse power function. This paper suggests that the TDR technique may be used as a non-destructive testing method in order to estimate the compressive strength of the CLSM mixture under construction.

Mechanical Characteristics of Basalt in Jeju Island with Relation to Porosity (공극률에 따른 제주도 현무암의 역학적 특성)

  • Moon, Kyoungtae;Park, Sangyeol;Kim, Youngchan;Yang, Soonbo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1215-1225
    • /
    • 2014
  • Volcanic rocks formed from magma near the earth surface commonly show vesicular structures due to exsolution of gaseous phases in magma. The distinction and the amount of vesicles are greatly various, but there are few researches on the effect of volume percentage of vesicles on the mechanical properties. In this study, mechanical characteristics of volcanic rocks in relation to the porosity are investigated through experimental tests with Jeju basalt. Two methods (the buoyancy method and the caliper method) are adopted for measuring porosity. And unconfined compressive strength, elastic modulus, tensile strength, and elastic wave velocity are plotted against porosity in order to propose the empirical relations after the regression analysis. Also, unconfined compressive strength and the elastic modulus in relation to the elastic wave velocity are proposed with the analysis. In the case of vesicular rocks with more than 5% porosity, it is found that the buoyancy method provides more accurate estimation of porosity than the caliper method. The unconfined compressive strength, the elastic modulus, and the elastic wave velocity decrease curvilinearly with increasing in porosity. Also, the unconfined compressive strength and the elastic modulus increase linearly with increasing in elastic wave velocity.

A Study on the Mechanical Properties of the Cretaceous Tuffs in Goheung Area. (고흥지역에 분포하는 백악기 응회암의 역학적 특성에 관한 연구)

  • Kim Hai-Gyoung;Koh Yeong-Koo;Oh Kang-Ho
    • The Journal of Engineering Geology
    • /
    • v.14 no.3 s.40
    • /
    • pp.273-285
    • /
    • 2004
  • The mechanical properties of the Cretaceous tuff distributed in the Goheung area were measured in the laboratory. Tuff (Goehung tuff and Palyeongsan welded tuff) in the study area is classified into vitric tuff with regard to its composition. The specific gravity, the dry density, the water content, the porosity and absorption ratio in tuffs of the study area are 2.51, $2.52(g/cm^2)$, 0.12($\%$), 4.51($\%$) and 1.91($\%$) in means, respectively. In the tuffs, dry densities are in inverse Proportion to Porosities, and absorption ratios are highly proportional with Porosities. The uniaxial compressive strengths(UCS) in the tuffs ranges from 80.4 to 208(MPa) and the average of the strength is 141.1(MPa). According to the engineering classification of intact rock (Deere & Miller, 1966), the tuffs are assigned to the high strength rocks. The point load strength index ($Is_a$) in axial test is 4.2(MPa) on the average, and the point load strength index ($Is_d$) in diametral test is 2.2(MPa) in mean, and the point load strength anisotrophic index($Ia_{(50)}$) by the ratio of $Is_a$ to $Is_d$ is 1.93. There is close linear correlation between the uniaxial compressive strength and point load strength index, and the equation representing the correlation is postulated as follows : UCS = 22 $Is_{(50)}$ +49 (MPa) (r=0.95). It is considered that this equation is a useful tool to estimate UCS for tuff in Goheung area.

Cohesion and Internal Friction Angle Estimated from Brazilian Tensile Strength and Unconfined Compressive Strength of Volcanic Rocks in Jeju Island (제주도 화산암의 압열인장강도와 일축압축강도로부터 추정된 점착력과 내부마찰각)

  • Moon, Kyoungtae;Yang, Soon-Bo
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.2
    • /
    • pp.17-28
    • /
    • 2020
  • With respect to the tensile strength of volcanic rocks in Jeju Island, a comparative study was conducted using the existing research results and the test results performed in this study. In addition, the characteristics and effectiveness of the cohesion and internal friction angle estimated from the Brazilian tensile strength and unconfined compressive strength of Jeju volcanic rocks were investigated. As results, the Brazilian tensile strength of Jeju volcanic rocks was closely related to absorption, and decreased exponentially as the absorption increased. It was confirmed that the internal friction angle was closely related to the ratio of unconfined compressive strength to Brazilian tensile strength (σc / σt), and increased logarithmically as the ratio of σc / σt increased. In addition, the ratios of σc / σt of Jeju volcanic rocks were in the range of 5~20 depending on the magnitude of internal friction angle. In the case of cohesion, it was closely related to the absorption and Brazilian tensile strength. The cohesion exponentially decreased as the absorption increased, such as the relation between the Brazilian tensile strength and absorption. It was confirmed that there was a linear relation between the cohesion and Brazilian tensile strength.

A Study on the Durability and Environmentally Friendly of Inorganic Grouting Material (무기질계 지반주입재의 내구성 및 친환경적 특성에 관한 연구)

  • Chun, Byungsik;Park, Dukhyum;Kang, Hyoungnam;Do, Jongnam
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.5
    • /
    • pp.37-43
    • /
    • 2008
  • Inorganic injection material, which is one of the ground improvement materials, consists of cement accelerator and inorganic micro particle. The inorganic injection material is known to overcome the major limitations of water glass type improvement materials, which are leaching and accompanying strength loss. The inorganic injection material is superior in durability and strength, and environmentally friendly since leaching is prevented. In this study, the effectiveness and environment-friendliness of the MIS(Micro Injection-process System) using the inorganic injection material is compared to SGR, which uses the water glass. The performed tests were unconfined compression test, chemical resistance test, and fish poison test. The unconfined compression tests showed that the MIS results in 1.7 times higher 28 day strength compared to the SGR. In addition, the strength continually increased with time for the MIS, while it decreased for the SGR. The chemical resistance tests indicated that the rate of change in length using the MIS is 10~25 times smaller than when using the SGR. The fish poison test proved that MIS was more environmentally friendly. The analysis of chemical ingredients of leached showed that the amount of $Cr^{6+}$, Pb and Si leached from the MIS is less compared to the SGR. Accordingly, the MIS grout is more high-strength than existing SGR grout. It is excellent in shortening of construction period, structural stability of foundation and environmentally friendly. So, it is considered that it has not little the problem about groundwater pollution.

  • PDF