• Title/Summary/Keyword: 일정 계획 최적화

Search Result 94, Processing Time 0.027 seconds

Optimization of Multi-reservoir Operation with Hedging Rules: Case Study of Han River Basin (Hedging Rule을 이용한 댐 연계 운영 최적화: 한강수계 사례연구)

  • Ryu, Gwan-Hyeong;Chung, Gun-Hui;Kim, Joong-Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.89-93
    • /
    • 2009
  • 홍수기에 집중되는 하천유출량을 갈수기에 적절히 활용하기 위한 대표적인 시설이 댐이다. 제한된 용수공급량을 적절히 분배해 용수수요량을 만족시키면서 미래 갈수기시 용수공급을 위한 댐 저류량을 조절하는 것이 댐 운영의 중요한 목적 중 하나이다. 본 연구에서는 댐 저류량에 따라 댐 계획방류량을 일정비율 줄여주는 Hedging Rule을 5단계로 적용하여 댐의 상시만수위 저류량에 대한 실제 저류량의 편차 절대치 합, 수요에 대한 용수공급 부족량의 합, 그리고 하천유지유량에 대한 하천유량 부족량의 합을 목적함수로 하여 혼합정수 선형계획법(MILP, Mixed Integer Linear Programming)으로 식을 구성하였다. 한강수계의 다목적댐인 충주, 횡성, 소양강 댐과 용수전용댐인 광동 댐, 그리고 발전용 댐이지만 비교적 큰 저류용량을 가진 화천 댐을 댐 연계 운영 대상으로 하여 수자원장기종합계획의 2003년 유출량 및 수요량 자료와 댐운영실무편람의 댐 계획방류량 자료를 10일 단위로 입력하여 GAMS/CPLEX를 이용해 최적화하였다. 그 결과 생공용수 수요량 99.99%, 농업용수 수요량 99.91%, 그리고 하천유지용수 수요량 99.24%를 충족시키면서, 댐 저류율이 66.54%에서 86.39%로 증가하였다.

  • PDF

Applications of Mathematical Optimization Method for Chemical Industries (화학 산업에서 수학적 최적화 기법을 적용한 사례)

  • Kim, Eun-Yong;Heo, Soon-Ki;Lee, Kyu-Hwang;Lee, Hokyung
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.209-223
    • /
    • 2020
  • Executions of SCM in a chemical company of which divisions produce petrochemicals, compounds, batteries, IT material and medicine directly affect their own profit. Execution level of SCM or optimization is very important. This work presents activities of SCM and optimization of inefficient issues in several industrial divisions using mathematical optimization method. The meaning is not only academic research but also making a useful tool which active partner deals with in his work. It is explained how to do beforehand and afterward optimization problem. The benefits are mentioned in the sections. The first of examples would be cover supply plan optimization, optimal profit business plan, and scheduling of a stretching process of polarizer based on minimizing raw material loss in polarizer production. The second example would be cover the optimization of production/packaging plans to maximize productivity of Poly Olefin processes, and the third example is minimization of transition loss in the production of battery electrodes. The fourth example would be cover scheduling of vessel approaching to berth. Because transportation of large portion of raw material and products of petrochemical industry is dealt with vessel, scheduling of vessel approaching to berth is important at the shore of large difference of tide. The final example would be scheduling problem to minimization of change over time of ABS semi products.

Crew Schedule Optimization by Integrating Integer Programming and Heuristic Search (정수계획법과 휴리스틱 탐색기법의 결합에 의한 승무일정계획의 최적화)

  • Hwang, Jun-Ha;Park, Choon-Hee;Lee, Yong-Hwan;Ryu, Kwang-Ryel
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.2
    • /
    • pp.195-205
    • /
    • 2002
  • Crew scheduling is the problem of pairing crews with each of the vehicles in operation during a certain period of time. A typical procedure of crew schedule optimization consists of enumerating all possible pairings and then selecting the subset which can cover all the operating vehicles, with the goal of minimizing the number of pairings in the subset. The linear programming approach popularly adopted for optimal selection of pairings, however, is not applicable when the objective function cannot be expressed in a linear form. This paper proposes a method of integrating integer programming and heuristic search to solve difficult crew scheduling problems in which the objective function cannot be expressed in linear form and at the same time the number of crews available is limited. The role of heuristic search is to improve the incomplete solution generated by integer programming through iterative repair. Experimental results show that our method outperforms human experts in terms of both solution quality and execution time when applied to real world crew scheduling Problems which can hardly be solved by traditional methods.

An Iterative Improvement Search for the Optimal Berth and Crane Scheduling (반복적 개선 탐색을 이용한 최적 선석 및 크레인 일정계획)

  • Hwang Junha
    • Journal of the Korea Society of Computer and Information
    • /
    • v.9 no.4 s.32
    • /
    • pp.117-125
    • /
    • 2004
  • The berth and crane scheduling problem in a container terminal encompasses the whole process of assigning berth to each ship. determining the duration of berthing, assigning container cranes to each ship, and determining the specific start and end time of each crane service, for all the ships scheduled to be arriving at the terminal during a certain scheduling horizon. This problem is basically a constraint satisfaction problem in which all the constraints should be satisfied. However, it is also an optimization problem because the requested arrival and departure time should be met for as many of the scheduled ships as possible. while the operation cost of the terminal should be minimized. In this paper. I present an effective approach to solving this problem, which combines both constraint satisfaction search and iterative improvement search. I test this method on a real world container terminal problem and the results show that the method can produce better results than any other existing method.

  • PDF

Linear programming models using a Dantzig type risk for portfolio optimization (Dantzig 위험을 사용한 포트폴리오 최적화 선형계획법 모형)

  • Ahn, Dayoung;Park, Seyoung
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.2
    • /
    • pp.229-250
    • /
    • 2022
  • Since the publication of Markowitz's (1952) mean-variance portfolio model, research on portfolio optimization has been conducted in many fields. The existing mean-variance portfolio model forms a nonlinear convex problem. Applying Dantzig's linear programming method, it was converted to a linear form, which can effectively reduce the algorithm computation time. In this paper, we proposed a Dantzig perturbation portfolio model that can reduce management costs and transaction costs by constructing a portfolio with stable and small (sparse) assets. The average return and risk were adjusted according to the purpose by applying a perturbation method in which a certain part is invested in the existing benchmark and the rest is invested in the assets proposed as a portfolio optimization model. For a covariance estimation, we proposed a Gaussian kernel weight covariance that considers time-dependent weights by reflecting time-series data characteristics. The performance of the proposed model was evaluated by comparing it with the benchmark portfolio with 5 real data sets. Empirical results show that the proposed portfolios provide higher expected returns or lower risks than the benchmark. Further, sparse and stable asset selection was obtained in the proposed portfolios.

Framework design of simulation-based ship production execution system(SPEXS) in a shipyard (시뮬레이션 기반 조선생산실행시스템 프레임워크 설계)

  • Lee, Kwang-Kook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.9
    • /
    • pp.1854-1864
    • /
    • 2011
  • Production planning is one of the most important activities in shipbuilding enterprises. Shop-floor supervisors and planners still do not have enough information to effectively analyze shop operations because of the difference between production planning and shop-floor scheduling. In this paper, process analysis was conducted between production planning and shop-floor control to clarify the difference, and the necessity of the manufacturing execution system(MES) was derived in a shipyard. Therefore, the simulation-based ship production execution system(SPEXS) was defined by analyzing characteristics of MES. The architectural functions of the system were deducted from the process of requirement analysis. The SPEXS' framework was constructed on the basis of the architectural functions. This framework will provide more reliable production schedules and allow engineers to plan and control shop operations in real-time.

Military Training Schedule Optimization Model for Improving the Combat Power of Troop (부대 전투력 향상을 위한 군 교육훈련 일정계획 최적화 모형)

  • Park, Cheol Eon;Jeong, Chang Soon;Kim, Kyung Sup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.240-247
    • /
    • 2020
  • The Korean military is having difficulty maintaining combat power due to the insufficient troop numbers caused by a demographic cliff and the reduction of the mandatory military service period. Recently, discussions on improving the military training system have increased significantly. This paper proposes an optimization model to establish military training schedules to improve combat power. The oblivion and learning effects on training tasks were quantified through a survey and applied to the model. The objective value, combat power, was calculated based on the total task scores of the unit members and the number of task failures after four weeks. The scenarios were configured by the change in educational conditions and initial scores of some tasks. As a result of scenario experiments, combat power has increased by at least 10% and up to 77%, which is sufficient to maintain combat power considering the change in troops. In addition, the planning of combat skill tasks has a significant impact on combat power. Through this research model, it is expected that military training managers will be able to establish a training schedule that maintains or improves the combat power of troops effectively.

An Optimization of Process Planning around Quays based on the Yard Customized GIS and the Simulator (조선 전용 GIS와 안벽 시뮬레이터를 이용한 후행 중일정 최적화)

  • Ruy, Won-Sun;Hwang, Ho-Jin;Park, Chang-Kyu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.2
    • /
    • pp.97-103
    • /
    • 2015
  • This paper has focused on the middle term process planning around quays based on the prefixed long-term plan of the product mixed ships. Recently, the order rate of high add-value ships in domestic shipyards has been sharply increased and the spending time at quays is accordingly on an increasing trend. For proper and practical process planning related to quays, it has to be closely connected with a long-term plan and product calendar, erection network and result of ship allocation around quays. Moreover, it is also required to include the integrated consideration of the whole process of a yard, each ship, and each team respectively. The most distinguishing feature of this study is that it would run on the ship allocation simulator and GIS framework in order not to be limited to the specific one yard and the readers can figure out the optimization formulation containing the work load leveling and a different approach from PERT/CPM. The proposed approach reflected all requirements from the department of process planning and management in a shipyard, and the analysis of the results has explained its performance of the optimization result with the examples of total 43 ships under construction from 2008 to 2013.

한국형발사체개발사업을 위한 EVMS 적용방안에 관한 연구

  • Seo, Gyeon-Su;Choe, Yeong-In;Lee, Hyo-Yeong;Hong, Il-Hui
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.152.1-152.1
    • /
    • 2012
  • 한국형발사체개발사업은 대형복합시스템 사업이며, 장기간에 걸쳐 개발이 진행되는 사업이다. 따라서 사업적, 기술적 측면의 불확실성과 위험 등이 존재하며, 이를 적절히 관리 통제하지 못하면 비용 상승, 일정 지연 및 기술성능 요구조건 등의 불만족을 초래한다. 따라서 개발사업 초기단계에서부터 일정, 비용, 기술성능 및 위험관리 등을 위한 종합적 사업관리시스템 구축 및 운용은 개발사업 성공의 주요 관건이다. 현재 한국형개발사업단에서는 이러한 요구조건을 만족시키기 위한 일환으로써 일정 및 비용에 대한 효과적 관리시스템인 EVMS(Earned Value Management System)을 구축하여 운용 중에 있으며, 한국형개발사업에 맞는 최적화된 EVMS을 구축하기 위하여 시스템 커스터마이징 작업을 수행 중에 있다. EVMS의 구축과정에서 가장 고심했던 문제는 WBS 개발과 성과(Earned Value) 측정방법의 선정이었다. WBS의 경우, 개발초기단계에서부터 사업 전체를 포괄하는 완벽한 WBS을 개발하는 것은 상당히 어려운 문제이다. 그러나 사업초기에 존재하는 불확실성 및 위험에도 불구하고 개발을 계속 진행해야 하는 상황은 개발 현장에서 자주 접하게 되는 문제이다. 이러한 문제를 해결하기 위해서 적용하는 유용한 기법이 연동계획하기(Rolling Wave Planning)이다. 한국형개발사업을 위한 EVMS 구축과정에서도 이와 같은 문제에 봉착하게 되어 WBS 개발 시 연동계획하기(Rolling Wave Planning)기법을 적용할 예정이다. 성과(EV) 측정방법의 경우, 퍼센트완료기법과 마일스톤+퍼센트완료기법 등을 선정하여 적용 중에 있다. 현재 연구개발사업의 특성을 고려하여 우선 퍼센트완료기법을 적용하여 성과를 측정하였으나, 성과측정 결과의 주관성 문제로 인하여 마일스톤+퍼센트완료기법을 적용하여 성과(EV) 측정 결과의 객관성을 최대한 확보 할 예정이며, 최종적으로 한국형개발사업에 최적화된 성과측정 기법을 개발할 예정이다.

  • PDF

A Heuristic Algorithm for Berth Planning with a Limited Number of Cranes (크레인 대수의 제약을 고려한 선석계획 문제에 대한 발견적 해법)

  • Park, Young-Man;Kim, Kap-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.35 no.1
    • /
    • pp.63-70
    • /
    • 2011
  • This paper discusses the problem of scheduling berth and container cranes simultaneously in port container terminals. A mixed-integer programming model is formulated by considering various practical constraints. A heuristic algorithm is suggested for solving the mathematical model. A numerical experiment was conducted to test the performance of the suggested heuristic algorithm.