• Title/Summary/Keyword: 일정하중

Search Result 610, Processing Time 0.025 seconds

Reduction of Shear Strength of Railway Roadbed Materials with Freezing-thawing Cycle (동결융해 반복에 따른 철도노반재료의 전단강도 변화)

  • Choi, Chan yong;Shin, Eun chul;Kang, Hyoun Hoi
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.7
    • /
    • pp.13-21
    • /
    • 2011
  • In seasonal frozen areas with climatic features, which have a temperature difference in the winter and thawing season, changes of mechanical properties of the soil in the zone could be seen between the freezing and thawing surface. In particular, in soil with many fine particles, a softening of the roadbed usually occurs from frost and thawing actions. The lower bearing capacity is a rapidly progressive the softening of roadbed, and occurred a mud-pumping by repeated loading. In this study, the three kind of sandy soil with contents of fine particles were conducted by directly shear box test with the number of cyclic in freeze-thawing and the water content of soil. Subsequently, the relationship between the shear strength and freeze-thaw cycling time was obtained. The shear strength was decreased with the increase of the freeze-thaw cycling time. A shear stress deterioration of the soil with power function modal is proposal.

Stress-strain Behavior of Remolded Clay Using Different Shear Rate and Plastic Indices (전단속도와 소성지수를 달리한 재생성 점성토의 응력-변형률 거동)

  • Lee, Yonghee;Kang, Kwon-Soo;Jung, Sang-Guk;Kang, Jintae;Kim, Daehyeon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.1
    • /
    • pp.27-33
    • /
    • 2011
  • In general, the shear strength of a clay specimen under the direct shear test and the triaxial compression test increases with an increase in the shear rate. This study investigates the effects of shear rate and silt content on the stress-strain behavior of remolded Gwangyang clay, by changing the shear rate and the silt content. Based on the results of the triaxial compression tests, the equi-strain line of remolded Gwangyang clay shows initially positive slope and then becomes flat at certain strain level. As the strain level where the equistrain becomes flat is different depending on the soil with different silt contents, this can be considered as the inherent property of soil.

Reverse Design for Composite Rotor Blade of BO-105 Helicopter (BO-105 헬리콥터 복합재 로터 블레이드 역설계)

  • Lee, Chang-Bae;Jang, KiJoo;Im, Byeong-Uk;Shin, SangJoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.7
    • /
    • pp.539-547
    • /
    • 2021
  • Helicopter rotor blade is required to be designed by considering the interacting effects among aerodynamics, flexibility, and controllability. The reverse design allows the structural components to have common characteristics by using the configuration numerics and experimental results. This paper aims to design the composite rotor blade which will feature common characteristics with that of BO-105. The present engineering design procedure is done by dividing the rotor blade into a few sections and composite laminates across the cross section. For each section, variational asymptotic beam sectional analysis (VABS) program is used to evaluate its flapwise, lagwise, and torsion stiffnesses to have discrepancy smaller than certain tolerance. Finally, CAMRAD II is used to predict the stress acting on the rotor blade during the specific flight condition and to check whether the present deign is structurally valid.

Evaluation of Lateral Resistance for Tie-cell Wave-dissipating Block by Model Experiments (모형실험을 통한 타이셀소파블록 구조체의 수평저항력 평가)

  • Kim, Tae-Hyung;Kim, Jiseong;Choi, Ju-Sung;Kang, Gichun
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.12
    • /
    • pp.87-97
    • /
    • 2020
  • Recently, interest in Tie-cell wave-dissipating blocks that can compensate for the disadvantages of block-type breakwaters and provide economically effective design is increasing. Tie-cell wave-dissipating block has high activity resistance due to its structure in which each block is held together by a pile. In this study, through the laboratory model experiments, it was possible to confirm the increase in lateral resistance of the Tie-cell wave-dissipating blocks due to the penetration of the piles. The lateral resistance of the piles appeared almost constant regardless of the overburden load of the blocks. The lateral resistance shared by the piles changed depending on the increase or decrease in the lateral resistance of the friction between blocks. In the experiment in which two piles were penetrated, the overall lateral resistance was larger than the case a single pile was used, but the resistance behavior of the piles was different.

Effect of Induction of Electromagnetic Field by Partitioned Coils on Fracture Energy of Steel Fiber Reinforced Mortar (분할된 코일을 이용한 전자기장 유도가 강섬유보강몰탈의 파괴에너지에 미치는 영향)

  • Moon, Do-Young;Mukharromah, Nur Indah
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.219-226
    • /
    • 2022
  • In this experimental study, the effect of continuously changing the position of electromagnetic force using several coils and a relay switch on fracture energy was investigated. Normal mortar and steel slag mortar specimens in which 50 % and 100 % of sand was replaced with steel slag were cast and exposed to electromagnetic field. The electric field was induced by one coil without a relay switch as an existing method and by partitioning the coil and continuously changing the position using a relay switch. The fracture energy was calculated from the load-vertical displacement curve obtained from the experiment and compared with each other. As a result of the experiment, it was confirmed that the method of partitioning the coil and changing the position of electromagnetic force by using a relay switch is effective in increasing the fracture energy even if the same amount of power is used.

Precast Segmental PSC Bridge Columns with Precast Concrete Footings : II. Experiments and Analyses (조립식 기초부를 갖는 프리캐스트 세그먼트 PSC 교각 : II. 실험 및 해석)

  • Kim, Tae-Hoon;Kim, Young-Jin;Lee, Jae-Hoon;Shin, Hyun-Mock
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4A
    • /
    • pp.407-419
    • /
    • 2009
  • The purpose of this study is to investigate the seismic behavior of precast segmental PSC bridge columns with precast concrete footings and to provide the details and reference data. Six precast segmental PSC bridge columns were tested under a constant axial load and a cyclically reversed horizontal load. A computer program, RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. A bonded or unbonded tendon element based on the finite element method, that can represent the interaction between tendon and concrete of prestressed concrete member, is used. A joint element is modified to predict the inelastic behaviors of segmental joints. This study documents the testing of precast segmental PSC bridge columns with precast concrete footings and presents conclusions based on the experimental and analytical findings.

Precast Segmental PSC Bridge Columns with Precast Concrete Footings : I. Development and Verification of System (조립식 기초부를 갖는 프리캐스트 세그먼트 PSC 교각 : I. 시스템 개발 및 검증)

  • Kim, Tae-Hoon;Park, Se-Jin;Kim, Young-Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4A
    • /
    • pp.395-405
    • /
    • 2009
  • The purpose of this study was to investigate the performance of precast segmental PSC bridge columns with precast concrete footings. The proposed system can reduce work at a construction site and makes construction periods shorter. The precast concrete footings is intended to support precast segmental PSC bridge columns and provides an alternative to current cast-inplace systems, particularly for areas where reduced construction time is desired. Shortened construction time, in turn, leads to important safety and economic advantages when traffic disruption or rerouting is necessary. A model of precast segmental PSC bridge columns was tested under a constant axial load and a cyclically reversed horizontal load. In the companion paper, the experimental and analytical study for the performance assessment of precast segmental PSC bridge columns with precast concrete footings is performed.

Undrained Shear Behavior of Cemented Sand (고결모래의 비배수 전단거동)

  • Lee, Moon Joo;Choi, Sung Kun;Hong, Sung Jin;Lee, Woo Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3C
    • /
    • pp.181-190
    • /
    • 2006
  • The behavior of artificially cemented sands were investigated by undrained triaxial test of isotropically consolidated sample. The cementation were induced by gypsum that is generally used for the aitificial cementation of sands. The gypsum of 5~20%(sand weight) were included in the sand and cured in the mold under the overburden pressure 55kPa. The yielding strength and stiffness of cemented sand were increased as the degree of cementation. And the dilation of sand was restricted by the cementation bonds, but after breakage of the bonds, it was increased more abrupt than the uncemented sands. The effective stress path showed that the aspects of effective pore water pressure were changed as the degree of cementation and the relative density. The effective stress ratio of cemented sand in the phase transformation line and the failure line were changed by the cementation. Generally the behavior of cemented sand more influenced by the degree of cementation than the relative density.

Seismic Performance Assessment of Circular Reinforced Concrete Bridge Piers with Confinement Steel: I. Experiments and Analyses (원형 철근콘크리트 교각의 횡방향 철근에 따른 내진성능평가 : I. 실험 및 해석)

  • Kim, Tae-Hoon;Park, Se-Jin;Kim, Young-Jin;Kang, Hyeong-Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.339-349
    • /
    • 2006
  • The purpose of this study is to investigate the seismic behavior of circular reinforced concrete bridge piers with confinement steel and to provide the data for developing improved seismic design criteria. Fourteen circular reinforced concrete bridge piers were tested under a constant axial load and a cyclically reversed horizontal load. The accuracy and objectivity of the assessment process may be enhanced by the use of sophisticated nonlinear finite element analysis program. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. In the companion paper, the proposed numerical method for the seismic performance assessment of circular reinforced concrete bridge piers with confinement steel is verified by comparison with experimental results.

Consolidation Characteristics of Soft Ground in Suction Drain Method (석션드레인공법이 적용된 연약지반의 압밀특성에 관한 사례 분석)

  • Kim, Byung Il;Kim, Do Hyung;Kim, Soo Sam;Han, Sang Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6C
    • /
    • pp.287-294
    • /
    • 2009
  • Suction Drain Method is a relatively new technique to improve soft ground using vacuum pressure which can be directly applied to the soft ground through drains that the pore water pressure around them are decreased without changing total stress. This can accelerate volume changes and increase strength of the ground. This paper shows the results of field test of the suction drain method applied at dredged and reclaimed clay. To evaluate the improvement effects of soft ground by the suction drain method, this paper analyzed real-time field measurements to the results of the laboratory tests and numerical analysis. The comparisons of the settlement and shear strength between suction drain method and surcharge preloading method show possibilities for replacement of the preloading methods. The settlements by suction drain method were 2.3 times larger and undrained shear strength were 300%~400% higher than surcharge method. Moreover, the water content is decreased about 30% and the preconsolidation pressure is increased about $0.52kgf/cm^2$.