• Title/Summary/Keyword: 일정하중

Search Result 610, Processing Time 0.028 seconds

Slab Construction Load Distribution in a Multistory-shored RC Structure System with Different Slab Thickness (슬래브 두께가 다른 다층지지 RC 구조 시스템에서의 슬래브 시공 하중 분포)

  • Sang-Min Han;Jae-Yo Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.2
    • /
    • pp.17-26
    • /
    • 2024
  • In recent times, accidents involving structural elements, formwork, and shore have been persistently occurring during concrete pouring, especially in multi-story reinforced concrete (RC) structures. In previous studies, research on construction load analysis was mainly conducted for cases where the thickness of all slabs is constant. However, when the thickness of some slabs is different, the variation in the stiffness of slab cross-sections can lead to different distributions of construction loads, necessitating further investigation. In this study, the slab thickness was set as a variable, and the analysis of the distribution of construction loads was conducted, taking into account the influence of changes in slab thickness on the concrete stiffness and structure. It was confirmed that not only the concrete material stiffness but also the slab cross-section stiffness should be considered in the estimation of construction loads when the slab thickness changes. As the slab thickness increases, the maximum construction load and maximum damage parameter on the layer with increased thickness significantly increase, and it was observed that a thicker slab results in a higher proportion of construction load.

The Creep Behavior of Shale in Daegu Area (대구지역 셰일의 크리프 특성)

  • 김영수;정성관;차주석;방인호
    • Tunnel and Underground Space
    • /
    • v.13 no.2
    • /
    • pp.100-107
    • /
    • 2003
  • Deformation is found by an external force in the rock which has internal stress. So, deformation is increased in time what is stressed under constant load. Rock materials collapse suddenly in a long period when the creep rate increases slightly. So mechanical deformability of the ground is an essential condition for determination of long term safety in structures. The result of analysis in 40%, 50%, 60%, 70% of constant load in creep test, strain velocity constants $\alpha$ and ${\gamma}$ increase with load increasement. Griggs equation is more exact than Li and Xia, Singh equation, and G$_2$of a flow constant by Burger's model decreases with stress increasement, but η$_1$$_2$and G$_1$ manifest irregularly in this study.

A Study on Shear Strength under Constant Normal Load Conditions by Using 3DEC (3DEC을 이용한 일정수직하중 조건에서의 전단강도에 관한 연구)

  • Noh, Young-Mok;Mun, Hong-Ju;Kim, Ki-Ho;Jang, Won-Yil
    • Tunnel and Underground Space
    • /
    • v.24 no.1
    • /
    • pp.46-54
    • /
    • 2014
  • Direct shear tests have been initiated to understand the characteristics of joints which crucially affect the stability of rock mass. In this research, numerical approach in direct shear tests has been initiated using 3DEC on the basis of 3D distinct element method. Normal loads were altered in four different levels on artificial joint tests depending on the sawtooth angle and strengths on constant normal stress conditions, measuring the peak shear strength according to the direct shear tests under laboratory condition. Also results obtained from mechanical properties through laboratory test were used to perform numerical modeling, and shear strength obtained from the modeling was used to compare with laboratory direct shear test. As a result numerical analysis from distinct element method can simulate well on the shear behavior of rockmass.

Strongest Simple Beams with Constant Volume (일정체적 단순지지 최강보)

  • Lee, Byoung Koo;Lee, Tae Eun;Kim, Young Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2A
    • /
    • pp.155-162
    • /
    • 2009
  • This paper deals with the strongest beams with the solid regular polygon cross-section, whose volumes are always held constant. The differential equation of the elastic deflection curve of such beam subjected to the concentrated and trapezoidal distributed loads are derived and solved numerically. The Runge-Kutta method and shooting method are used to integrate the differential equation and to determine the unknown initial boundary condition of the given beam. In the numerical examples, the simple beams are considered as the end constraint and also, the linear, parabolic and sinusoidal tapers are considered as the shape function of cross sectional depth. As the numerical results, the configurations, i.e. section ratios, of the strongest beams are determined by reading the section ratios from the numerical data related with the static behaviors, under which static maximum behaviors become to be minimum.

Strongest Beams having Constant Volume Supported by Clamped-Clamped and Clamped-Hinged Ends (고정-고정 및 고정-회전 지점으로 지지된 일정체적 최강보)

  • Lee, Byoung Koo;Lee, Tae Eun;Shin, Seong Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3A
    • /
    • pp.251-258
    • /
    • 2009
  • This paper deals with the strongest beams with the solid regular polygon cross-section, whose volumes are always held constant. The differential equation of the elastic deflection curve of such beam subjected to the concentrated and trapezoidal distributed loads are derived and solved by using the double integration method. The Simpson's formula was used to numerically integrate the differential equation. In the numerical examples, the clamped-clamped and clamped-hinged ends are considered as the end constraints and the linear, parabolic and sinusoidal tapers are considered as the shape function of cross sectional depth. As the numerical results, the configurations, i.e. section ratios, of the strongest beams are determined by reading the section ratios from the numerical data obtained in this study, under which static maximum behaviors become to be minimum.

Lateral Behavior of Driven Piles Subjected to Cyclic Lateral Loads in Sand (모래지반에서 반복수평하중을 받는 항타 말뚝의 수평거동)

  • Paik, Kyu-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.12
    • /
    • pp.41-50
    • /
    • 2010
  • The behavior of laterally cyclic loaded piles is different from that of piles under monotonic loading and depends on soil and load characteristics. In this study, model pile load tests were performed using a calibration chamber to investigate the effects of load characteristics on the behavior of laterally cyclic loaded piles in sand. Results of the model tests show that the ultimate lateral load capacity of laterally cyclic loaded piles decreases linearly with increasing the number of cycles and increases slightly with increasing the magnitude of cyclic lateral loads. When the piles reach the ultimate state, the maximum bending moment developed in the piles decreases linearly with increasing the number of cycles and it occurs at a depth of 0.36 times pile embedded length for all the number of cycles. However, both the magnitude and depth of the maximum bending moment of piles in the ultimate state increase slightly as the magnitude of cyclic lateral loads increases. It is also observed that the cyclic lateral loading generates a decrease in the ultimate lateral load capacity and maximum bending moment for piles in the ultimate state. In addition, based on the model test results, a new empirical equation for the ultimate lateral load capacity of laterally cyclic loaded piles in dense sand is also proposed. A comparison between predicted and measured load capacities shows that the proposed equation reflects satisfactorily the model test results.

Wave Forces Acting on a Cylindrical Aquaculture Fish Cage (원통형 양식시설물에 작용하는 파랑하중)

  • Cho, Il-Hyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.1
    • /
    • pp.63-69
    • /
    • 2011
  • In this paper, the wave forces on a cylindrical aquaculture fish cage, which consists of the porous mesh with the uniform porosity, are analyzed using matched eigenfunction expansion method. The boundary condition on the porous net is derived based on the Darcy's law, which implies that the velocity of the fluid passing through the net is linearly proportional to the pressure difference between two sides of the net. The wave forces and wave responses are investigated by changing the porous parameter of porous net as well as the submerged position (floating type, bottom-mounted type) of an aquaculture fish cage. It is found that the wave forces on a bottom-mounted type are largely decreased compared with that on a floating type. Also, the porosity of the netting structure plays an important role in reducing the wave forces and the wave elevation in the vicinity of an aquaculture fish cage.

Loading Effect on ACPD of a Crack in Paramagnetic Material (균열을 가진 상자성체의 교류전위차에 미치는 하중의 영향)

  • Lee, Jeong-Hee
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.1
    • /
    • pp.1-7
    • /
    • 1999
  • In order to determine the mode I stress intensity factor ($K_I$) by means of the alternating current potential drop(ACPD) technique, the change in potential drop due to load for a paramagnetic material containing a two-dimensional surface crack was examined. The cause of the change in potential drop and the effects of the magnetic flux and the demagnetization on the change in potential drop were clarified by using the measuring systems with and without removing the magnetic flux from the circumference of the specimen. The change in potential drop was linearly decreased with increasing the tensile load and was caused by the change in conductivity near the crack tip. The reason of decreasing the change in potential drop with increasing the tensile load was that the increase of the conductivity near the crack tip due to the tensile load caused the decreases of the resistance and internal inductance of the specimen The relationship between the change in potential drop and the change in $K_I$ was not affected by demagnetization and was independent of the crack length.

  • PDF

Experimental Validation of Crack Growth Prognosis under Variable Amplitude Loads (변동진폭하중 하에서 균열성장 예측의 실험적 검증)

  • Leem, Sang-Hyuck;An, Dawn;Lim, Che-Kyu;Hwang, Woongki;Choi, Joo-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.3
    • /
    • pp.267-275
    • /
    • 2012
  • In this study, crack growth in a center-cracked plate is predicted under mode I variable amplitude loading, and the result is validated by experiment. Huang's model is employed to describe crack growth with acceleration and retardation due to the variable loading effect. Experiment is conducted with Al6016-T6 plate, in which the load is applied, and crack length is measured periodically. Particle Filter algorithm, which is based on the Bayesian approach, is used to estimate model parameters from the experimental data, and predict the crack growth of the future in the probabilistic way. The prediction is validated by the run-to-failure results, from which it is observed that the method predicts well the unique behavior of crack retardation and the more data are used, the closer prediction we get to the actual run-to-failure data.

Fracture Behaviors of Alumina Tubes under Combined Tension/Torsion (알루미나 튜브의 인장/비틀림 조합하중하의 파괴거동)

  • 김기태;서정;조윤호
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.1
    • /
    • pp.19-19
    • /
    • 1991
  • Fracture of Al2O3 tubes for different loading path under combined tension/torsion was investigated. Macroscopic directions of crack propagation agreed well with the maximum principal stress criterion, independent of the loading path. However, fracture strength from the proportional loading test(τ/σ= constant) showed either strengthening or weakening compared to that from uniaxial tension, depending on the ratio τ/σ. The Weibull theory was capable to predict the strengthening of fracture strength in pure torsion, but not the weakening in the proportional loading condition. The strengthening or weakening of fracture strength in the proportional loading condition was explained by the effect of shear stresses in the plane of randomly oriented microdefects. Finally, a new empirical fracture criterion was proposed. This criterion is based on a mixed mode fracture criterion and experimental data for fracture of Al2O3 tubes under combined tension/torsion. The proposed fracture criterion agreed well with experimental data for both macroscopic directions of crack propagation and fracture strengths.