• Title/Summary/Keyword: 일산화탄소 산화반응

Search Result 84, Processing Time 0.022 seconds

A Study of the Formation of Carbon Monoxide in the Combustion of Anthracite Holed Briquettes (연탄이 연소할 때에 생성되는 일산화탄소에 대한 연구)

  • Han, Dong-Chin
    • Journal of the Korean Chemical Society
    • /
    • v.11 no.4
    • /
    • pp.150-158
    • /
    • 1967
  • When anthracite burns by natural draft the mole percent of carbon monoxide (CO%) contained in exhaust gas is approximately expressed as follows in the early stage of combustion. (CO%)=$\frac{2{\alpha}}{1+{\alpha}}(CO_2%)$ exp $[-\vec{k}(No_2-Nc)^{1/2}{\tau}]$ where ${\alpha}=\frac{-0.395K_p+\sqrt{0.156K^2_p+(0.83+0.21K_p)K_p}}{0.83+0.21K_p}$ and $logK_p =-\frac{8593}{T} + 2.45logT -1.08{\times}10^{-3}T + 1.12{\times}10^{-7}T^2+2.77\vec{k},\;No_2$ and $N_c$ are the rate constant for the reaction ($CO+\frac{1}{2}O_2{\to}CO_2$), mole fraction of oxygen and oxides of carbon contained in the exhaust gas, respectively. From experimental evidence obtained in this work with natural draft combustion of briquettes the percent of carbon monoxide to the total quantity of oxides of carbon produced and rate of air flow into the furnace were: 1.76% and 0.53 l/sec (When lid is used in the furnace) 12.35% and 2.4 l/sec (without use of a lid). is the rate constant for the reaction($CO+\frac{1}{2}O_2{\to}CO_2$) and $N_0,\;and\;N_c$ are respectively the molefraction of oxygen and oxide of carbon contained in the exhaust gas.

  • PDF

A Study on the Characteristics of CO Oxidation by NO Poisoning in Pt/TiO2 Catalyst (Pt/TiO2 촉매에서의 NO 피독에 의한 CO 산화반응특성 연구)

  • Kim, Min Su;Kim, Se Won;Hong, Sung Chang
    • Clean Technology
    • /
    • v.25 no.4
    • /
    • pp.296-301
    • /
    • 2019
  • This study was conducted to investigate the characteristics of CO oxidation by NO poisoning in Pt/TiO2 catalyst prepared by wet impregnation method and calcined at 400 ℃. In order to confirm the NO poisoning effect of the Pt/TiO2 catalyst, the change of reaction activity was observed when NO was injected during the CO+O2 reaction where it was ascertained that the CO conversion rate rapidly decreased below 200 ℃. Also, CO conversion was not observed below 125 ℃. Recovery of initial CO conversion was not verified even if NO injection was blocked at 125 ℃. Accordingly, various analyses were performed according to NO injection. First, as a result of the TPD analysis, it was confirmed that NO pre-adsorption in catalyst inhibited CO adsorption and conversion desorption from adsorbed CO to CO2. When NO was pre-adsorbed, it was confirmed through H2-TPR analysis that the oxygen mobility of the catalyst was reduced. In addition, it was validated through FT-IR analysis that the redox cycle (Pt2+→Pt0→Pt2+) of the catalyst was inhibited. Therefore, the presence of NO in the Pt/TiO2 catalyst was considered to be a poisoning factor in the CO oxidation reaction, and it was determined that the oxygen mobility of the catalyst is required to prevent NO poisoning.

Numerical Study on the Effect Recess on the Turbulent Combustion of Kerosene/LOx Coaxial Rocket Injector (케로신-산소 로켓 동축 분사기 난류 연소에서 리세스의 영향에 대한 수치해석)

  • Choi, Jeong-Yeol;Shin, Jae-Ryul
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.92-95
    • /
    • 2011
  • A multi-step quasi-global mechanism is developed for the kerosene/oxygen combustion analysis including dissociation products. Reaction constants of the global reaction are determined to have agreement with experimental data. The mechanism is used for the numerical analysis of the combustion flow field of the kerosene/oxygen shear coaxial injector. The results from high-resolution numerical analysis confirmed qualitatively that the recess enhance the fuel/air mixing and combustion efficiency by the increased flow instabilities.

  • PDF

The Effects of Sulfur on the Catalytic Reaction between Carbon Monoxide and Nitric Oxide on Polycrystalline Platinum Surface (다결정 백금표면에서의 일산화탄소와 일산화질소의 촉매반응에 미치는 황의 영향)

  • Park, Youn-Seok;Kim, Young-Ho;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.1 no.2
    • /
    • pp.215-223
    • /
    • 1990
  • The effects of sulfur on the catalytic reaction between CO and NO on polycrystalline Pt surface, which is very important in the development of catalyst for automobile exhaust gas control, have been studied using thermal desorption spectrometry(TDS) under ultra-high vacuum(UHV) conditions. Sulfur weakened both the adsorptions of CO and NO by direct site blocking and indirect electronic effect. S(a) desorbing below 800 K gave little effect on reaction activity whereas S(a) desorbing above 800 K, which adsorbs as an atomic state, gave much effect on it. The adsorbed sulfur existed on the surface of platinum in the form of islands, and also reduced the adsorption energies of adsorbates by the long-ranged electronic effect. The platinum catalyst in the reaction between CO and NO was poisoned selectively by S(a), poisoning firstly the active sites of this reaction.

  • PDF

An Experimental Study on Real Time CO Concentration Measurement of Combustion Gas in LPG/Air Flame Using TDLAS (TDLAS를 이용한 LPG/공기 화염 연소가스의 실시간 CO 농도 측정에 관한 연구)

  • So, Sunghyun;Park, Daegeun;Park, Jiyeon;Song, Aran;Jeong, Nakwon;Yoo, Miyeon;Hwang, Jungho;Lee, Changyeop
    • Clean Technology
    • /
    • v.25 no.4
    • /
    • pp.316-323
    • /
    • 2019
  • In order to enhance combustion efficiency and reduce atmosphere pollutants, it is essential to measure carbon monoxide (CO) concentration precisely in combustion exhaust. CO is the important gas species regarding pollutant emission and incomplete combustion because it can trade off with NOx and increase rapidly when incomplete combustion occurs. In the case of a steel annealing system, CO is generated intentionally to maintain the deoxidation atmosphere. However, it is difficult to measure the CO concentration in a combustion environment in real-time, because of unsteady combustion reactions and harsh environment. Tunable Diode Laser Absorption Spectroscopy (TDLAS), which is an optical measurement method, is highly attractive for measuring the concentration of certain gas species, temperature, velocity, and pressure in a combustion environment. TDLAS has several advantages such as sensitive, non-invasive, and fast response, and in-situ measurement capability. In this study, a combustion system is designed to control the equivalence ratio. Also, the combustion exhaust gases are produced in a Liquefied Petroleum Gas (LPG)/air flame. Measurement of CO concentration according to the change of equivalence ratio is confirmed through TDLAS method and compared with the simulation based on Voigt function. In order to measure the CO concentration without interference from other combustion products, a near-infrared laser at 4300.6 cm-1 was selected.

Effect of Dehydration on DMC Synthesis over Ceria Catalysts (Ceria 촉매상에서 탈수가 DMC 합성에 미치는 영향)

  • You, Jiin;Woo, Je-Min;Kim, Hyunuk;Park, Young Cheol;Park, Jong-Ho;Moon, Jong-Ho
    • Clean Technology
    • /
    • v.22 no.3
    • /
    • pp.196-202
    • /
    • 2016
  • In this study, ceria- based catalysts were prepared for dimethyl carbonate (DMC) synthesis and reaction conditions were evaluated for finding the optimal reaction route. In order to find optimal catalysts for DMC synthesis, calcination temperature and Cu(II) impregnation amount were evaluated. The oxidative carbonylation using methanol, carbon monoxide and oxygen and the direct synthesis using methanol and carbon dioxide were introduced for producing DMC. Following the law of Le Chatelier, the dehydration reaction was applied for enhancing the reactivity (methanol conversion) as removing water during the reaction. 2-cyanopyridine, as a chemical dehydration agent, was used. In the case of the oxidative carbonylation, methanol conversion rate increased from 15.1% to 38.7% and the DMC selectivity increased from 0% to 98.8%. In the case of the direct synthesis, methanol conversion rate increased from 1.0% to 77.8% and the DMC selectivity increased from 41.2% to 100.0%.

Study on Basic Properties of Single Crystalline ZnO Nanowire (단결정 산화아연 나노선의 기초 물성 연구)

  • Ra, H.W.;Khan, R.;Kim, J.T.;Yeo, C.H.;Im, Y.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.4
    • /
    • pp.259-265
    • /
    • 2009
  • We fabricated the field effect transistor using single crystalline ZnO nanowires synthesized by a conventional thermal evaporation method and investigated their basic properties under the various conditions such as ultraviolet irradiation, reducing gas and electrolyte. The typical carrier concentration and mobility of the single crystalline ZnO nanowire with a diameter of 100 nm and length of 5 um were $1.30{\times}10^{18}cm^{-3}$ and $15.6cm^2V^{-1}s^{-1}$, respectively. The current of ZnO nanowire under ultraviolet irradiation significantly increased about 400 times higher as compared to in the darkness. In addition, the ZnO nanowire showed typical sensing characteristics for $H_2$ and CO due to well-known surface reactions and typical current-voltage characteristics under the 0.1 M NaCl electrolyte.

플라즈마를 활용한 $CO_2$ dry reforming

  • Song, Yeong-Hun;Lee, Dae-Hun;Jo, Seong-Gwon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.71.1-71.1
    • /
    • 2013
  • 메탄가스와 이산화탄소는 지구온난화 가스이기 때문에 배출규제가 점차 강화될 것으로 전망되고 있다. 또한 이들 가스는 매립지 또는 바이오 공정을 통해 발생되는 가스이기 때문에 단순히 배출을 억제하는 데 그치지 않고 보다 적극적으로 활용해야할 필요성이 있다. 현재 메탄과 이산화탄소를 동시에 활용하는 기술로는 촉매공정을 통해 메탄과 이산화탄소를 수소와 일산화탄소로 전환하는 방법이 대표적이나, 본 공정은 $800{\sim}900^{\circ}C$의 고온조건을 필요로 하고 고압조건에서 다량으로 생성되는 탄소에 의한 촉매 활성도의 저하문제로 인해 해당 기술의 실제 보급에 어려움이 있는 것으로 알려져 있다. 한편, 플라즈마를 활용한 메탄가스 개질(reforming) 기술은 고온 플라즈마인 경우 60~70년 전부터 상용화 사례가 있으며, 저온 플라즈마의 경우는 약 10여 년 전부터 개질반응의 공정온도를 낮추려는 연구를 중심으로 기초연구가 수행되어왔다. 이들 플라즈마를 활용한 메탄개질 기술은 메탄의 직접분해, 부분산화, 수증기 개질 및 건식개질 등으로 분류되는 데, 최근 지구온난화가스인 이산화탄소의 처리에 대한 관심이 높아지면서 이산화탄소를 활용하는 건식개질 기술에 대한 관심이 높아지고 있는 상황이다. 현재 플라즈마 건식개질기술에서 주된 이슈는 높은 전력비용이고, 이를 낮추기 위해 촉매를 활용하거나 플라즈마 발생을 최적화하려는 연구가 진행되고 있다. 본 발표에서는 플라즈마를 활용한 건식개질 기술의 장단점, 실용화 가능성 및 향후의 과제를 다루고 있으며, 이를 위해 기계연구원에서의 연구결과 및 국내외 연구실의 결과를 살펴보았다.

  • PDF

The Influence of Support on Gas Mask Cobalt Catalysts for Low Temperature CO Oxidation (방독마스크용 코발트 촉매의 저온 일산화탄소 산화반응에서 지지체의 영향)

  • Kim, Deog-Ki;Kim, Bok-Ie;Shin, Chae-Ho;Shin, Chang-Sub
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.2 s.74
    • /
    • pp.35-45
    • /
    • 2006
  • Cobalt catalysts for gas mask loaded on various supports such as $Al_{2}O_{3},\;TiO_{2}$, AC(activated carbon) and $SiO_{2}$ were used to examine influences of calcination temperatures and reaction temperatures for CO oxidation. $Co(NO_{3})_2{\cdot}6H_{2}O$ was used as cobalt precursor and the catalysts were prepared by incipient wetness impregnation. The catalysts were characterized using XRD, TGA/DTA, TEM, $N_{2}$ sorption, and XPS. For the catalytic activity, support was in the order of ${\gamma}-Al_{2}O_{3}>TiO_{2}>SiO_{2}>AC\;and\;Al_{2}O_{3}$. The catalytic activity at lower temperature than $80^{\circ}C$ showed that with the increase of reaction temperature, cobalt catalysts on ${\gamma}-Al_{2}O_{3},\;TiO_{2},\;AC\$ has the negative activation energy but that of $SiO_{2}$ was positive.

CO Oxidation Over Manganese Oxide Catalysts: Effect of Calcination Temperature (망간 산화물 촉매상에서 일산화탄소의 산화반응 : 소성온도의 영향)

  • Park, Jung-Hyun;Kim, Yun-Jung;Cho, Kyung-Ho;Kim, Eui-Sik;Shin, Chae-Ho
    • Clean Technology
    • /
    • v.17 no.1
    • /
    • pp.41-47
    • /
    • 2011
  • [ $MnO_2$ ]catalysts were prepared by precipitation method using potassium manganate and manganese acetate. The effect of calcination temperatures of $MnO_2$ catalysts for CO oxidation has been studied and their physicochemical properties were studied by X-ray diffraction (XRD), $N_2$ sorption, temperature programmed reduction of $H_2$ ($H_2-TPR$), and temperature programmed desorption of CO (CO-TPD) techniques. $MnO_2$ calcined at $300^{\circ}C$ catalyst has a large surface area $181m^2/g$ having a narrow pore size distribution at 9 nm. The results of XRD and $H_2-TPR$ showed that the catalysts calcined at different temperatures showed mixed oxidation states of Mn such as $Mn^{4+}$ and $Mn^{3+}$. CO-TPD showed that the quantity of $CO_2$ desorbed was decreased with increasing the calcination temperatures. The catalytic activity over the catalyst calcined at $300^{\circ}C$ exhibited the highest conversion reaching to 100% at $200^{\circ}C$. $H_2O$ vapor showed an inhibiting effect on the efficiency of the catalyst because of co-adsorption with CO on the active sites of manganese oxide catalysts and the initial catalytic activity of CO oxidation could be regenerated by removing $H_2O$ vapor in the reactants.