• Title/Summary/Keyword: 일사 관측

Search Result 160, Processing Time 0.019 seconds

An Analysis of Observational Environments for Solar Radiation Stations of Korea Meteorological Administration using the Digital Elevation Model and Solar Radiation Model (수치표고모델과 태양복사모델을 이용한 기상청 일사 관측소 관측환경 분석)

  • Jee, Joon-Bum;Zo, Il-Sung;Kim, Bu-Yo;Lee, Kyu-Tae
    • Journal of the Korean earth science society
    • /
    • v.40 no.2
    • /
    • pp.119-134
    • /
    • 2019
  • In order to analyze the observational environment of solar radiation stations operated by the Korea Meteorological Administration (KMA), we used the digital elevation model (DEM) and the solar radiation model to calculate a topographical shading, sky view factor (SVF) and solar radiation by surrounding terrain. The sky line and SVF were calculated using high resolution DEM around 25 km of the solar stations. We analyzed the topographic effect by analyzing overlapped solar map with sky line. Particularly, Incheon station has low SVF whereas Cheongsong and Chupungryong station have high SVF. In order to validation the contribution of topographic effect, the solar radiation calculated using GWNU solar radiation model according to the sky line and SVF under the same meteorological conditions. As a result, direct, diffuse and global solar radiation were decreased by 12.0, 5.6, and 4.7% compared to plane surface on Cheongsong station. The 6 stations were decreased amount of mean daily solar radiation to the annual solar radiation. Among 42 stations, eight stations were analyzed as the urgent transfer stations or moving equipment quickly and more than half of stations (24) were required to review the observational environment. Since the DEM data do not include artifacts and vegetation around the station, the stations need a detail survey of observational environment.

An Improved Validation Technique for the Temporal Discrepancy when Estimated Solar Surface Insolation Compare with Ground-based Pyranometer: MTSAT-1R Data use (표면도달일사량 검증 시 발생하는 시간 불일치 조정을 통한 정확한 일사량 검증: MTSAT-1R 자료 이용)

  • Yeom, Jong-Min;Han, Kyung-Soo;Lee, Chang-Suk;Kim, Do-Yong
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.6
    • /
    • pp.605-612
    • /
    • 2008
  • In this study, we estimate solar surface insolation (SSI) by using physical methods with MTSAT-1R data. SSI is regarded as crucial parameter when interpreting solar-earth energy system, climate change, and agricultural production predict application. Most of SSI estimation model mainly uses ground based-measurement such as pyranometer to tune the constructed model and to validate retrieved SSI data from optical channels. When compared estimated SSI with pyranometer measurements, there are some systemic differences between those instruments. The pyranometer data observed upward-looking hemispherical solid angle and distributed hourly measurements data which are averaged every 2 minute instantaneous observation. Whereas MTSAT-1R channels data are taken instantaneously images at fixed measurement time over scan area, and are pixel-based observation with a much smaller solid angle view. Those temporal discrepancies result from systemic differences can induce validation error. In this study, we adjust hour when estimate SSI to improve the retrieved accurate SSI.

Temporal and Spatial Distributions of Solar Radiation with Surface Pyranometer Data in South Korea (일사 관측 자료에 의한 남한의 태양복사 시공간 분포)

  • Jee, Joon-Bum;Kim, Yeong-Do;Lee, Won-Hak;Lee, Kyu-Tae
    • Journal of the Korean earth science society
    • /
    • v.31 no.7
    • /
    • pp.720-737
    • /
    • 2010
  • This study is to analyze the temporal and spatial distributions of solar radiation in South Korea. Solar radiation data is observed every minute at 22 KMA (Korea Meteorological Administration) stations using pyranometer from January 2000 to August 2007. These data were calibrated using intensive comparative observation and solar radiation model. Intensive comparative observations are accomplished at 22 KMA stations between KNU (Kangnung (Gangneung-Wonju) National University) standard and station instruments during the month of August 2007. The solar radiation of a clear sky mainly is affected by precipitable water, solar altitude and geological height. Also old (raw) data is corrected by the solar radiation model only about clear day and is revised based on the temporal trend of instrument's sensitivity decrease. At all periods and all stations, differences between raw data (13.31 MJ/day) and corrected data (13.75 MJ/day) are 0.44 MJ/ day. So, the spatial distribution of solar radiation is calculated with seasonal and annual mean, and is the relationship with cloud amount is analyzed. The corrected data show a better consistency with the cloud amount than the old data.

An Analysis of Global Solar Radiation using the GWNU Solar Radiation Model and Automated Total Cloud Cover Instrument in Gangneung Region (강릉 지역에서 자동 전운량 장비와 GWNU 태양 복사 모델을 이용한 지표면 일사량 분석)

  • Park, Hye-In;Zo, Il-Sung;Kim, Bu-Yo;Jee, Joon-Bum;Lee, Kyu-Tae
    • Journal of the Korean earth science society
    • /
    • v.38 no.2
    • /
    • pp.129-140
    • /
    • 2017
  • Global solar radiation was calculated in this research using ground-base measurement data, meteorological satellite data, and GWNU (Gangneung-Wonju National University) solar radiation model. We also analyzed the accuracy of the GWNU model by comparing the observed solar radiation according to the total cloud cover. Our research was based on the global solar radiation of the GWNU radiation site in 2012, observation data such as temperature and pressure, humidity, aerosol, total ozone amount data from the Ozone Monitoring Instrument (OMI) sensor, and Skyview data used for evaluation of cloud mask and total cloud cover. On a clear day when the total cloud cover was 0 tenth, the calculated global solar radiations using the GWNU model had a high correlation coefficient of 0.98 compared with the observed solar radiation, but root mean square error (RMSE) was relatively high, i.e., $36.62Wm^{-2}$. The Skyview equipment was unable to determine the meteorological condition such as thin clouds, mist, and haze. On a cloudy day, regression equations were used for the radiation model to correct the effect of clouds. The correlation coefficient was 0.92, but the RMSE was high, i.e., $99.50Wm^{-2}$. For more accurate analysis, additional analysis of various elements including shielding of the direct radiation component and cloud optical thickness is required. The results of this study can be useful in the area where the global solar radiation is not observed by calculating the global solar radiation per minute or time.

An evaluation of evaporation estimates according to solar radiation models (일사량 산정 모델에 따른 증발량 분석)

  • Rim, Chang-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.12
    • /
    • pp.1033-1046
    • /
    • 2019
  • To evaluate the utilization suitability of solar radiation models, estimated solar radiation from 13 solar radiation models were verified by comparing with measured solar radiation at 5 study stations in South Korea. Furthermore, for the evaluation of evaporation estimates according to solar radiation models, 5 different evaporation estimation equations based on Penman's combination approach were applied, and evaporation estimates were compared with pan evaporation. Some solar radiation models require only meteorological data; however, some other models require not only meteorological data but also geographical data such as elevation. The study results showed that solar radiation model based on the ratio of the duration of sunshine to the possible duration of sunshine, maximum temperature, and minimum temperature provided the estimated solar radiation that most closely match measured solar radiation. Accuracy of estimated solar radiation also greatly improved when Angstrőm-Prescott model coefficients are adjusted to the study stations. Therefore, when choosing the solar radiation model for evaporation estimation, both data availability and model capability should be considered simultaneously. When applying measured solar radiation for estimating evaporation, evaporation estimates from Penman, FAO Penman-Monteith, and KNF equations are most close to pan evaporation rates in Jeonju and Jeju, Seoul and Mokpo, and Daejeon respectively.

Temporal and Spatial Distribution of Surface Solar Radiation in Korea Peninsula (한반도에서 지표면 태양광의 시공간 분포)

  • Lee, Kyutae;Jee, Joonbum;Zo, Ilsung;Choi, Youngjin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.40.1-40.1
    • /
    • 2010
  • 인간의 삶과 밀접한 관련이 있는 태양 에너지는 전세계적으로 에너지 부족 문제 해결방안을 위한 대체 에너지 자원으로 각광 받고 있다. 즉 태양으로부터 방출되어 지표면에 도달하는 태양광은 연간 약 23,000 TW(Perez et al., 2009)로써 다른 어떤 종류의 에너지원보다 풍부하기 때문에 태양광 발전은 양적인 측면에서의 무한한 잠재력뿐만 아니라 환경적인 측면에서 무공해라는 장점을 가진다. 특히 국내에서는 2030년까지 태양광 에너지와 풍력 및 수소에너지들은 3대 국가 에너지 전략 분야로 집중 육성되고 있다(한국과학기술정보연구원, 2007). 지표면에 도달하는 태양 에너지 평가 및 분석을 위하여 일사계에 의한 관측 자료가 이용될 수 있으나 관측 영역 및 관측 정밀도 문제 때문에 태양 복사 모델(Solar Radiative Transfer Model)에 의한 계산 자료가 중요하게 활용된다. 이 연구에서 한반도의 지표면 태양광 계산을 위하여 사용된 모델은 Iqbal(1983)에 근거한 것으로써 단일 기층의 모형대기를 가정한 모델이며 상세 모델(Line-by-Line Model)에 의하여 보정하여 2009년 1월부터 2009년 12월까지 한반도의 지표면 태양광 시공간 분포를 계산하였다. 이 계산을 위하여 대기 중의 가스와 에어로졸 및 구름 성분들에 대한 모델 입력자료 등이 요구되며 이 자료들은 기상청의 수치 모델(Regional Date Assimilation and Prediction System; RDAPS)과 기상 관련 인공위성(OMI와 MODIS 및 MTSAT-1R 등)으로부터 발췌하여 사용하였다. 그 결과 이 연구 기간(2009년 1월 ~ 2009년 12월)동안 1 km 간격의 수평면에 대하여 계산된 한반도의 지표면 태양광은 안동과 대구 및 진주를 연결하는 지역에서 최대값($5400MJ/m^2$ 이상)이 나타났다. 그러나 지표면 일사 관측 자료의 공간 분포는 이 연구 결과와 차이가 있었으며 그 원인은 관측소 일사계의 보정 및 관리운영에 따른 자료 정확성 결여 때문으로 평가된다.

  • PDF

Calibration of Pyranometer with Solar Radiation Intercomparison Observation at Research Institute for Radiation-Satellite, Gangneung-Wonju National University (강릉원주대학교 복사-위성연구소에서 실외 비교관측을 통한 전천일사계 교정)

  • Jee, Joon-Bum;Zo, Il-Sung;Kim, Bu-Yo;Lee, Kyu-Tae;Yoo, Myeong-Seon;Lee, Yong-Joo;Jang, Jeong-Pil
    • Journal of the Korean earth science society
    • /
    • v.40 no.2
    • /
    • pp.135-148
    • /
    • 2019
  • Although the technology for the observation of solar radiation is rapidly developing worldwide, in Korea the guidelines for comparing observations of solar radiation are only now under preparation. In this study, a procedure for intercomparison observations of solar radiation was established which accounts for meteorological and geographical conditions. The intercomparisons among observations by national reference pyranometers were carried out at the Asia Regional Radiation Center, Japan, in 2017. Recently, the result of the calibration of the reference pyranometer of the Korean Meteorological Administration (KMA) has been reported. Using the KMA pyranometer as a reference, comparisons between observations and calibrations were carried out for the standard (B to J) pyranometers of the KMA, and for the reference (A) and the standard pyranometers of the Gangneung-Wonju National University. The intercomparisons were carried out between October 24 and October 25, 2018. The sensitivity constants were adjusted according to the results of the data analysis performed on October 24. On October 25, a post-comparison observation was also performed, and the data of the participating pyranometers were verified. The sensitivity constants were calculated using only data corresponding to a solar radiation of $450.0W\;m^{-2}$ or higher. The B and I pyranometers exhibited a small error (${\pm}0.50W\;m^{-2}$), and the applied sensitivity constants were in the range $0.08-0.16{\mu}V(W\;m^{-2})^{-1}$. For the C pyranometer, the adjustment of the sensitivity constant was the largest, i.e., $-0.16{\mu}V(W\;m^{-2})^{-1}$. As a result, the nine candidate pyranometers could be calibrated with an average error of $0.06W\;m^{-2}$ (0.08%) with respect to the KMA reference, which falls within the allowed tolerance of ${\pm}1.00%$ (or ${\pm}4.50W\;m^{-2}$).

Assessment of Region Specific Angstrom-Prescott Coefficients on Uncertainties of Crop Yield Estimates using CERES-Rice Model (작물모형 입력자료용 일사량 추정을 위한 지역 특이적 AP 계수 평가)

  • Young Sang, Joh;Jaemin, Jung;Shinwoo, Hyun;Kwang Soo, Kim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.256-266
    • /
    • 2022
  • Empirical models including the Angstrom-Prescott (AP) model have been used to estimate solar radiation at sites, which would support a wide use of crop models. The objective of this study was to estimate two sets of solar radiation estimates using the AP coefficients derived for climate zone (APFrere) and specific site (APChoi), respectively. The daily solar radiation was estimated at 18 sites in Korea where long-term measurements of solar radiation were available. In the present study, daily solar radiation and sunshine duration were collected for the period from 2012 to 2021. Daily weather data including maximum and minimum temperatures and rainfall were also obtained to prepare input data to a process-based crop model, CERES-Rice model included in Decision Support System for Agrotechnology Transfer (DSSAT). It was found that the daily estimates of solar radiation using the climate zone specific coefficient, SFrere, had significantly less error than those using site-specific coefficients SChoi (p<0.05). The cumulative values of SFrere for the period from march to September also had less error at 55% of study sites than those of SChoi. Still, the use of SFrere and SChoi as inputs to the CERES-Rice model resulted in slight differences between the outcomes of crop growth simulations, which had no significant difference between these outputs. These results suggested that the AP coefficients for the temperate climate zone would be preferable for the estimation of solar radiation. This merits further evaluation studies to compare the AP model with other sophisticated approaches such as models based on satellite data.

The Sensitivity Analysis according to Observed Frequency of Daily Composite Insolation based on COMS (관측 빈도에 따른 COMS 기반의 일 평균 일사량 산출의 민감도 분석)

  • Kim, Honghee;Lee, Kyeong-Sang;Seo, Minji;Choi, Sungwon;Sung, Noh-Hun;Lee, Darae;Jin, Donghyun;Kwon, Chaeyoung;Huh, Morang;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.733-739
    • /
    • 2016
  • Insolation is an major indicator variable that can serve as an energy source in earth system. It is important to monitor insolation content using remote sensing to evaluate the potential of solar energy. In this study, we performed sensitivity analysis of observed frequency on daily composite insolation over the Korean peninsula. We estimated INS through the channel data of Communication, Ocean and Meteorological Satellite (COMS) and Cloud Mask which have temporal resolution of 1 and 3 hours. We performed Hemispherical Integration by spatial resolution for meaning whole sky. And we performed daily composite insolation. And then we compared the accuracy of estimated COMS insolation data with pyranometer data from 37 points. As a result, there was no great sensitivity in the daily composite INS by observed frequency of satellite that accuracy of the calculated insolation at 1 hour interval was $28.6401W/m^2$ and 3 hours interval was $30.4960W/m^2$. However, there was a great difference in the space distribution of two other INS data by observed frequency of clouds. So, we performed sensitivity analysis with observed frequency of clouds and distinction between the two other INS data. Consequently, there was showed sensitivity up to $19.4392W/m^2$.

Development of a deep neural network model to estimate solar radiation using temperature and precipitation (온도와 강수를 이용하여 일별 일사량을 추정하기 위한 심층 신경망 모델 개발)

  • Kang, DaeGyoon;Hyun, Shinwoo;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.2
    • /
    • pp.85-96
    • /
    • 2019
  • Solar radiation is an important variable for estimation of energy balance and water cycle in natural and agricultural ecosystems. A deep neural network (DNN) model has been developed in order to estimate the daily global solar radiation. Temperature and precipitation, which would have wider availability from weather stations than other variables such as sunshine duration, were used as inputs to the DNN model. Five-fold cross-validation was applied to train and test the DNN models. Meteorological data at 15 weather stations were collected for a long term period, e.g., > 30 years in Korea. The DNN model obtained from the cross-validation had relatively small value of RMSE ($3.75MJ\;m^{-2}\;d^{-1}$) for estimates of the daily solar radiation at the weather station in Suwon. The DNN model explained about 68% of variation in observed solar radiation at the Suwon weather station. It was found that the measurements of solar radiation in 1985 and 1998 were considerably low for a small period of time compared with sunshine duration. This suggested that assessment of the quality for the observation data for solar radiation would be needed in further studies. When data for those years were excluded from the data analysis, the DNN model had slightly greater degree of agreement statistics. For example, the values of $R^2$ and RMSE were 0.72 and $3.55MJ\;m^{-2}\;d^{-1}$, respectively. Our results indicate that a DNN would be useful for the development a solar radiation estimation model using temperature and precipitation, which are usually available for downscaled scenario data for future climate conditions. Thus, such a DNN model would be useful for the impact assessment of climate change on crop production where solar radiation is used as a required input variable to a crop model.