• 제목/요약/키워드: 일사해석

Search Result 85, Processing Time 0.031 seconds

Estimation of distributed groundwater recharge in Jangseong (장성지역의 분포형 지하수 함양량 산정)

  • Chung, Il-Moon;Kim, Youn Jung;Park, Seunghyuk;Lee, Jeongwoo;Kim, Nam Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.301-301
    • /
    • 2015
  • 효율적인 지하수 관리를 위해서는 시공간적인 변동성을 고려한 지하수 함양량의 정량적 산정이 필수적이다. 본 연구에서는 지표수-지하수 연동해석이 가능하며 토지이용 특성과 국내 토양특성을 가장 잘 표현할 수 있는 한국형 장기 유출 모형 SWAT-K를 이용하여 장성지역의 분포형 지하수 함양량을 산정하였다. 행정경계와 수자원단위지도에서 제시하는 표준단위유역을 기준으로 하여 장성군을 포함하는 유역을 SWAT-K 구동을 위한 모델영역으로 설정하여 주하도를 따라 13개의 소유역으로 구분하였다. SWAT-K를 구동하기 위해서는 기상 및 수문자료를 구축해야 하는데 강우량을 비롯하여 기온, 풍속, 일사량, 상대습도 등의 기상자료가 요구된다. 본 연구에서는 대상유역 내에 위치한 광주, 정읍 기상관측소의 자료를 이용하여 기상자료를 구축하였으며, 모형의 계산시간, 모형결과의 정확도 등을 판단하여 30m 공간해상도를 가지는 DEM을 300m 공간해상도로 가공하여 사용하였다. 토지이용도는 모의시 다양한 토지이용상태를 반영할 수 있도록 중분류(1:25,000) 토지이용도를 사용하였다. 토양도는 국립농업과학원에서 토양도 전산화 사업을 통해 구축된 1:25,000 축척의 정밀토양도를 사용하였다. SWAT-K를 이용하여 장성군을 포함한 전체유역에 대해 지표수-지하수 통합 물수지 분석 결과(2005년~2013년) 연평균 강수량 대비 유출률은 63.0%, 증발산률은 34.6%, 함양률은 19.5%로 나타났다. 지표수 유출과정과 지하수위 변동을 동시에 고려하여 산정한 소유역별 연간 함양량 결과를 산정하였고, 총 13개의 소유역별 연간 지하수 함양량을 제시하였다. 또한 SWAT-K 모형을 이용한 모델 영역중 장성군에 속하는 행정구역별, 표준권역별 연평균 함양량을 산출하였으며, 그 분석 결과 장성군 평균 함양률은 20.3%로 산정되었다.

  • PDF

Estimation of distributed groundwater recharge in Gimcheon region (김천지역의 분포형 지하수 함양량 산정)

  • Chung, Il-Moon;Park, Seunghyuk;Chang, Sun Woo;Lee, Jeongwoo;Kim, Nam Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.410-410
    • /
    • 2017
  • 지하수 관리를 위해서는 시공간적인 변동성을 고려한 지하수 함양량의 정량적 산정이 필수적이다. 본 연구에서는 지표수-지하수 연동해석이 가능하며 토지이용 특성과 국내 토양특성을 가장 잘 표현할 수 있는 한국형 장기 유출 모형 SWAT-K를 이용하여 김천지역의 분포형 지하수 함양량을 산정하였다. 행정경계와 수자원단위지도에서 제시하는 표준단위유역을 기준으로 하여 김천시를 포함하는 유역을 SWAT-K 구동을 위한 모델영역으로 설정하여 주하도를 따라 19개의 소유역으로 구분하였다. SWAT-K를 구동하기 위해서는 기상 및 수문자료를 구축해야 하는데 강우량을 비롯하여 기온, 풍속, 일사량, 상대습도 등의 기상자료가 요구된다. 본 연구에서는 대상유역 내에 위치한 구미, 추풍령, 거창, 상주 기상관측소와 김천, 지례, 부항1, 부항2, 선산 강우관측소의 자료를 이용하여 기상 및 강우자료를 구축하였으며, 모형의 계산시간, 모형결과의 정확도 등을 판단하여 30m 공간해상도를 가지는 DEM을 300m 공간해상도로 가공하여 사용하였다. 토지이용도는 모의시 다양한 토지이용상태를 반영할 수 있도록 중분류(1:25,000) 토지이용도를 사용하였다. 토양도는 국립농업과학원에서 토양도 전산화 사업을 통해 구축된 1:25,000 축척의 정밀토양도를 사용하였다. SWAT-K를 이용하여 김천시를 포함한 전체유역에 대해 지표수-지하수 통합 물수지 분석 결과(2008년~2015년) 연평균 강수량 대비 유출률은 61.2%, 증발산률은 36.3%, 함양률은 18.0%로 나타났다. 지표수 유출과정과 지하수위 변동을 동시에 고려하여 산정한 소유역별 연간 함양량 결과를 산정하였고, 총 19개의 소유역별 연간 지하수 함양량을 제시하였다. 또한 SWAT-K 모형을 이용한 모델 영역중 김천시에 속하는 행정구역별, 표준권역별 연평균 함양량을 산출하였으며, 그 분석 결과 김천시 평균 함양률은 18.2%로 산정되었다.

  • PDF

The Concentrating Photovoltaic System using a Solar Tracker (태양위치 추적 장치를 이용한 집광형 태양광 발전시스템)

  • Yoo, Yeong-tae;Na, Seung-kwon
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.4
    • /
    • pp.377-385
    • /
    • 2017
  • The solar cell need the characteristic interpreting because the solar cell changes greatly according to the isolation, temperature and load in the photovoltaic development. Moreover, to get many energy in photovoltaic development need the position tracking of the sun according to the environment change. Also, The solar cells should be operated at the maximum power point. In this paper, I used microprocessor and sensor and designed to improve the efficiency of the photovoltaic system the photovoltaic position tracker device, and compared the normal photovoltaic system of fixed form with the photovoltaic system of solar position tracked form. Moreover, compared the catalogue of solar cell module and the simulation through a mathematics modelling with the solar cell's characteristic interpreting and composed an power conversion system with boost converter and voltage source inverter. Used the constant voltage control method for maximum power point tracking in boost converter control and, used the SPWM(Sinusoidal Pulse Width Modulation) control method in inverter control. The result was less then 5% when compared the catalogue of solar cell module and the simulation through a mathematics modelling. The boost rate of boost converter was similar to 167 % with the simulation.

A Numerical Study on the Performance Analysis of a Solar Air Heating System with Forced Circulation Method (강제순환 방식의 공기가열식 태양열 집열기의 성능분석에 관한 수치해석 연구)

  • Park, Hyeong-Su;Kim, Chul-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.122-126
    • /
    • 2017
  • The aim of this study was to develop a device for solving the heating problem of living space using heated air, utilizing a simple air heater type collector for solar energy. At the present time, this study assessed the possibility of a development system through theoretical calculations for the amount of available energy according to the size change of the air-heated solar energy collector. To produce and supply hot water using the heat energy of the sun, hot water at $100^{\circ}C$ or less was produced using a flat or vacuum tube type collector. The purpose of this study was to research the air heating type solar collector that utilizes heating energy with heating air above $75^{\circ}C$, by designing and manufacturing an air piping type solar collector that is a simpler type than a conventional solar collector system. The analysis results were obtained for the generated air temperature ($^{\circ}C$) and the production of air (kg/h) to determine the performance of air heating by an air-heated solar collector according to the heat transfer characteristics in the collector of the model when a specified amount of heat flux was dropped into a solar collector of a certain size using PHOENICS, which is a heat flow analysis program applying the Finite Volume Method. From the analysis result, the temperature of the air obtained was approximately $40.5^{\circ}C$, which could be heated using an air heating tube with an inner diameter of 0.1m made of aluminum in a collector with a size of $1.2m{\times}1.1m{\times}0.19m$. The production of air was approximately 161 m3/h. This device can be applied to maintain a suitable environment for human activity using the heat energy of the sun.

Ecophysiological Interpretations on the Water Relations Parameters of Trees(VII) - Measurement of Water Flow by the Heat Pulse Method in a Larix leptolepis Stand - (수목(樹木)의 수분특성(水分特性)에 관(關)한 생리(生理)·생태학적(生態學的) 해석(解析)(VII) - Heat pulse법(法)에 의한 낙엽송임분(林分)의 수액류속(樹液流速) 계측(計測) -)

  • Han, Sang Sup;Kim, Sun Hee
    • Journal of Korean Society of Forest Science
    • /
    • v.82 no.2
    • /
    • pp.152-165
    • /
    • 1993
  • This is the basic study in order to know the amount of transpirational water loss in a Larix leptorepis stand by a heat pulse method. Especially this study has been measured and discussed the diurnal and seasonal trends of heat pulse velocity by changes of radiation, temperature and humidity, differences of heat pulse velocity by direction and depth in stem, differences of heat pulse velocity by dominant, codominant and suppressed trees, diurnal change of heat pulse velocity by change of leaf water potential, sap flow path way in sapwood by dye penetration and amount of daily and annual transpiration in a tree and stand. The results obtained as follows : 1. Relation between heat pulse velocity(V) and sap flow rate(SFR) was established as a equation of SFR=1.37V($r=0.96^{**}$). 2. The sap flow rate presented in the order of dominant, codominant and suppressed tree, respectively. The daily heat pulse velocity was changed by radiation, temperature and vapor pressure deficit. 3. The heat pulse velocity in individual trees did not differ in early morning and in late night, but had some differed from 12 to 16 hours when radiation was relatively high. 4. The heat pulse velocity and leaf water potential showed similar diurnal variation. 5. The seasonal variation of heat pulse velocity was highest in August, but lowest in October and similar value of heat pulse velocity in the other months. 6. The heat pulse velocity in stem by direction was highest in eastern, but lowest in southern and similar velocity in western and northern. 7. The difference of heat pulse velocity in according to depths was highest in 2.0cm depth, medium in 1.0cm depth, and lowest in 3.0cm depth from surface of stem. 8. The sap flow path way in stem showed spiral ascent turning right pattern in five sample trees, especially showed little spiral ascent turning right in lower part than 3m hight above ground, but very speedy in higher than 3m hight. 9. The amount of sap flow(SF) was presented as a equation of SF=1.37AV and especially SF in dominant tree was larger than in codominant or suppressed tree. 10. The amount of daily transpiration was 30.8ton/ha/day and its composition ratio was 83% at day and 17% at night. 11. The amount of stand transpiration per month was largest in August(1,194ton/ha/month), lowest in May (386ton/ha/month). The amount of stand transpiration per year was 3,983ton/ha/year.

  • PDF

Ecophysiological Interpretations on the Water Relations Parameters of Trees(IX) - Measurement of the Transpiration Rate by the Heat Pulse Method in a Quercus mongolica Stand - (수목(樹木)의 수분특성(水分特性)에 관(關)한 생리(生理)·생태학적(生態學的) 해석(解析)(IX) - Heat pulse법(法)을 이용(利用)한 신갈나무임분(林分)의 증산속도(蒸散速度) 측정(測定) -)

  • Han, Sang Sup;Kim, Sun Hee
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.2
    • /
    • pp.288-299
    • /
    • 1996
  • This is the basic study to investigate the amount of transpirational water loss in thrifty mature Quercus mongolica stand by the heat pulse method. The differences of heat pulse velocity by direction and depth, differences of heat pulse velocity by dominant, codominant and suppressed trees, diurnal changes of heat pulse velocity due to the change of leaf water potential, vapor pressure deficit and radiation, and sap flow path way in sapwood by dye penetration were measured in stems. Finally the amounts of daily and annual transpiration in stand were calculated by the heat pulse velocity. The results obtained were summarized as follows : 1. Relationship between heat pulse velocity(V) and sap flow rate(SFR) was obtained as a equation of SFR=1.37V. 2. The sap flow rate was high in the order of dominant, codominant, and suppressed trees. The daily heat pulse velocity changed with radiation, temperature and vapor pressure deficit. 3. The heat pulse velocity showed the similar diurnal variation as the leaf water potential change. 4. The heat pulse velocity showed the highest value in May(4.0cm/hr in average), the lowest one in July(2.9cm/hr in average). 5. The heat pulse velocity in the same stem presented the highest value in the northern direction, medium in western, and the lowest in southern and eastern. 6. The heat pulse velocity in stem was highest in 0.5cm, medium in 1.0cm, and lowest in 1.5cm depth from the surface of stem. 7. The sap flow path way in stem showed sectorial straight ascent pattern in four sample trees. 8. The amount of sap flow(SF) was presented as a equation of $SF=1.37A{\cdot}V$(A: the cross-sectional area of sapwood, V: heat pulse velocity), and especially SF was larger in dominant tree than codominant and suppressed trees. 9. The amount of daily transpiration was 5.6ton/ha/day, and its composition ratio was 72% at day and 28% at night. 10. The amount of stand transpiration per month was largest in May(168ton/ha/month), lowest in July(125ton/ha/month). The amount of stand transpiration per year was 839ton/ha/year.

  • PDF

Unusual Delay of Heading Date in the 2022 Rice Growth and Yield Monitoring Experiment (2022년도 벼 작황시험에서 관찰된 출수기 지연 현상 보고)

  • HyeonSeok, Lee;WoonHa, Hwang;SeoYeong, Yang;Yeongseo, Song;WooJin, Im;HoeJeong, Jeong;ChungGen, Lee;HyeongJoo, Lee;JongTae, Jeong;JongHee, Shin;MyoungGoo, Choi
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.330-336
    • /
    • 2022
  • It is likely that the heading would occur early when air temperature increases. In 2022, however, the heading date was delayed unusually, e.g., by 3 to 5 days although temperature during the vegetative growth stage was higher than normal years. The objective of this study was to identify the cause of such event analyzing weather variables including average temperature, sunshine hours, and day-length for each growth stage. The observation data were collected for medium-late maturing varieties, which has been grown at crop yield experiment sites including Daegu, Andong, and Yesan. The difference in heading date was compared between growing seasons in 2021 and 2022 because crop management options, e.g., the cultivars and cultivation methods, were identical at those sites during the study period. It appeared that the heading date was delayed due to the difference in temperature responsiveness under a given day-length condition The effect of the temperature increase on the heading date differed between the periods during which when the day-length was more than 14.3 hours before and after the summer-solstice.. The effect of the temperature decrease during the period from which the day-length decreased to less than 14.3 hours to the heading date was relatively greater. This merits further studies to examine the response of rice to the temperature change under different day-length and sunshine duration in terms of heading.

Analysis and Improvement of Growing Environment of Two Tier Cropping Systems in Plastic Film House (플라스틱 온실내 2단 재배 시스템의 생육환경분석 및 개선)

  • 김문기;김기성
    • Journal of Bio-Environment Control
    • /
    • v.8 no.1
    • /
    • pp.49-55
    • /
    • 1999
  • This study aims at analyzing environment factors of two tier cropping systems and suggesting effective structures of two tier cropping systems. The environment factors in two tier cropping systems are temperature, relative humidity, solar radiation, temperature of nutrient solution, and wind velocity. Especially, The most important factors are the solar radiation and the solar incident area between the two tiers. During the experiment, observations were made of the two levels in the plastic greenhouse. The highest temperatures were 38.3$^{\circ}C$ in the top level and, 35.5$^{\circ}C$ in the bottom level, respectively. The temperature of the nutrient solution between the two levels showed little difference. The relative humidity in the top level was 60~7o% and that in the bottom 65~80%, exhibiting that the bottom is approximately 10% higher. Change of photosynthetic photon flux density and solar radiation both have a tendency to be similar. The wind velocities for both levels were recorded at 0.1m.s$^{-1}$ in the afternoon and 0.05m.s$^{-1}$ in the evening. The solar incident areas in the bottom level increased by approximately 25% at an East-West position and 17.7% at a South-North position, respectively.

  • PDF

Studies on the Dry Matter Production and Growth Analysis of Rice Plants (수도품종의 물질생산과 생장해석에 관한 연구)

  • Ho-Yul Kim;Seung-Dal Song
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.20
    • /
    • pp.74-86
    • /
    • 1975
  • Experiments were carried out to know some physiological characters of several rice varieties such as Suweon 213-1, Suweon 214, Palkweng, Akibare and Nongbaek. In experiments, total standing crop, leaf area and total net production of dry matter were higher in the variety of Suweon 213-1 than the other varieties. RGR, NAR and CGR showed the highest at heading period of Suweon 213-1 than the other varieties. Efficiency of solar energy utilization also showed the highest through the entire growing period of Suweon 213-1. The amount of net production and dead parts could be estimated by the successive application of the productive structure.

  • PDF

Simulation Model for Estimating Soil Temperature under Mulched Condition (멀칭에 따른 지온변화 모델의 작성 및 토양온도의 추정)

  • Cui RiXian;Lee Byun-Woo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.1 no.2
    • /
    • pp.119-126
    • /
    • 1999
  • A numerical model using soil surface energy balance and soil heat flow equations to estimate mulched soil temperature was developed. The required inputs data include weather data, such as global solar radiation, air temperature, wind speed, atmospheric water vapor pressure, the optical properties of mulching material, and soil physical properties. The observed average soil temperature at 50 cm depth was used as the initial value of soil temperature at each depth. Soil temperature was simulated starting at 0 hour at an interval of 10 minutes. The model reliably described the variation of soil temperature with time progress and soil depth. The correlation between the estimated and measured temperature yielded coefficient values of 0.961, 0.966 for 5cm and 10cm depth of the bare soil, respectively, 0.969, 0.965 for the paper mulched soil, and 0.915, 0.938 for the black polyethylene film mulched soil. The percentages of absolute differences less than 2$^{\circ}$C between soil temperatures measured and simulated at 10 minute interval were 97.4% and 98.5% for 5 cm and 10cm for the bare soil, respectively, and 95.8% and 97.4% for the paper mulched soil, and 70.1% and 92.5% for the polyethylene film mulched soil. The results indicated that the model was able to predict the soil temperature fairly well under mulched condition. However, in the night time, the model performance was a little poor as compared with day time due to the difficulty of accurate determination of the atmospheric long wave radiation.

  • PDF