• Title/Summary/Keyword: 일사반사율

Search Result 12, Processing Time 0.026 seconds

A Study on Solar Reflectance of Cool-Roof Coating Material with Heat Barrier and Waterproofing Performance According to Color Type (차열 및 방수성능을 갖는 쿨루프 도막재의 색상별 일사반사율 평가 연구)

  • Oh, Sang-Keun;Lee, Tae Yang;Park, Jin-Sang;Kim, Dong-Bum;Park, Wan-Goo;Choi, Su-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.251-252
    • /
    • 2018
  • Cool roof coating materials generally use white color which has the highest reflectance, but it is a tendency to apply various colors because it can cause glare and fatigue of a nearby building user due to the urban beauty and high reflection. This study when applying color diversity material cool roof coating was carried out as a basic research for the degree of solar radiation reflectance change. Experiment result. As a result of the measurement of the reflectance of each specimen, white showed the best reflectance in the near infrared region, and black had the lowest reflectance. Also, in case of brown, it was confirmed that the reflectance of solar radiation in the near extrinsic region is lower than that of gray.

  • PDF

Properties of Temperature Reduction of Cooling Asphalt Pavements Using High-Reflectivity Paints (고반사 도료를 사용한 차열성 아스팔트 도로포장의 온도저감특성)

  • Hong, Chang Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.317-327
    • /
    • 2013
  • Air pollution and artificial heat of urban areas have caused the urban heat island in which asphalt pavements absorb solar heat during the daytime and release the heat at night. Hence, in order to improve the environment of urban areas, it is necessary to examine cooling pavements that can reduce heat on road pavements in urban areas. The application of temperature insulation paints on road pavements require to reduce black brightness for visibility, to increase the reflection rate of infrared light and minimize the reflection rate of visible light. In the study, one part of Acrylic-emulsion was used as a main binder, and the changes in black brightness and the changes of addition ratio (0%, 15%, 30%) of hollow ceramics, as well as kinds of paints (carbon black pigment, mixed mineral pigment) were selected as the main experimental factors. The performance of temperature reduction of cooling pavements was analyzed through the reflection rate of spectrum, the reflection rate of solar heat, and the lamp test. Abrasion resistance, UV accelerated weather resistance, and sliding resistance were tested in real situations. In addition, the performance of heat reduction of testing pavements covered with high-reflection paints was analyzed by using an infrared camera. As the test results, when using mixed mineral paints and hollow ceramic of 30%, the reflection rate of spectrum was 43% in the area of near-infrared ray and 17% in the area of visible light at black brightness of $L^*$=42.89 and the reflection rate of solar heat was 27.5%. Total color difference was ${\Delta}E$=0.27 in the test of UV Accelerated Weather Resistance, indicating almost no changes in color. BPN was more than 53 when scattering #2 and #4 silica sand of more than $0.12kg/m^2$. In Taber's abrasion resistance test, abrasion loss was up to 86.4mg at 500 rotations. The performance of heat reduction was evaluated using an infrared camera at the test section applying high-reflection paints to asphalt pavements, in which the results showed that the temperature was reduced by $12.7^{\circ}C$ on CI-30-40 cooling pavements ($L^*$=38.76) and by $14.2^{\circ}C$ on CI-30-60 cooling pavements ($L^*$=57.12).

The Influence of the Landscaping Shade Membrane's Brightness on the Mean Radiant Temperature(MRT) of Summer Outdoor (조경용 차양막 재료의 명도가 하절기 옥외공간의 평균복사온도에 미치는 영향)

  • Lee, Chun-Seok;Ryu, Nam-Hyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.5
    • /
    • pp.65-73
    • /
    • 2015
  • The purpose of this study was to compare the Mean Radiant Temperature(MRT) under two landscaping shade membranes, white and black, with those of natural outdoor spaces at summer midday. An additional perforated black shading net was applied and compared for the consideration of the practical application. The average MRT at the height of 2.4m, 10cm below the membranes of black, white, and perforated black were $49.1^{\circ}C$, $41.6^{\circ}C$ and $36.8^{\circ}C$ respectively, while that of open sky was $41.8^{\circ}C$. This indicates that a closer position to the darker membrane caused a higher MRT. At the height of 1.1m and 1.7m, the difference of MRT between the black and the white membranes was slight, while the value of white was unexpectedly higher than the black. The MRT of black perforated net showed the lowest value at every height. The black membrane absorbed more solar radiation than the white, which caused the greater release of long wave radiation and higher temperature near the membrane itself. In spite of the higher albedo of the white membrane, the higher solar radiation transmittance rate of which seemed to cause the slightly higher MRT than the black at the hight of 1.1m and 1.7m. In summary, the performance of the black membrane was slightly better than the white in terms of the air conditioning of the human related space around the height of 1.1m and 1.7m, when the shading membranes were at 2.5m height.

A Study on the Change in Energy Performance of the Domestic Building by the Isolation-heat Paint (차열도료 적용을 통한 국내 건축물의 에너지 성능 변화에 관한 연구)

  • Choi, Doo-Sung;Chun, Hung-Chan;Cho, Kyun-Hyong
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.5
    • /
    • pp.33-40
    • /
    • 2011
  • In this study, it is quantitatively analyzed for thermal Characteristics of isolation-heat paint which has been supplied to a domestic market through experiments and simulations. In the case of experiment using the container box, it shows 8% decrease on cooling energy consumption in a summer season, but shows increase on heating energy consumption. As a result, the analysis has found increase of energy consumption. As a result of holding simulations with meteorological data of domestic major cities, it shows an increase of energy consumption in domestic condition, and it is hard to expect an energy saving from the isolation-heat paint unless greater air-conditioning load.

Effects of Covering Materials on Light Environment in Protected Horticulture (시설원예의 피복자재가 광환경에 미치는 영향)

  • 조일환;조삼증;김태영;허노열;권영삼
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1997.05a
    • /
    • pp.87-91
    • /
    • 1997
  • 시설원예의 현대화에 따른 각종 피복자재의 도입ㆍ개발과 시설재배 면적의 급속한 증가로 인해 그에 따른 피복자재의 광환경 특성이 검토되지 않고 피복자재가 이용되고 있다. 따라서 본 연구는 연질필름중 가장 피복재배면적이 많은 PE(Polyethylene)필름과 경질판PC (Polycarbonate), PET (Poyethylene terephthalate), 유리 피복자재의 광환경 개선을 위한 기초 연구로 실시하였다. 1. 피복자재별 광투과율은 PE가 약 80%, 유리가 약 90%로, 유리 온실은 완공후 4년이하 경과했음에도 약 5개월 된 PE 보다 광투과율이 높았다. 2. 피복자재별 광반사율은 PE가 가장 높은 약 3% 였고 PC>PET>유리의 순으로 나타났다. 3. 피복자재별 광흡수율은 PE는 전파장에 걸쳐 고루 흡수되었으나 PC, PET는 자외선의 흡수가 많았다. 4. 피복자재별 토마토 군락내 광분포에서 제 1과방의 광량은 시설내 투과일사의 약 15%정도였다. 5. 피복자재별 토마토엽의 증산속도는 PE가 다소 낮았으나 처리간 큰 차이는 없었다. 6. 수경재배의 토마토의 광합성속도가 토경재배 보다 낮았다.

  • PDF

A Study on Change in Window Transmitted Solar and the Resultant Wall Surface Convective Heat Gain with Regard to Slat Reflectance of External and Internal Blinds (실내·외 블라인드의 Slat 반사율에 따라 창호 일사투과량 및 그에 따른 벽체 대류열획득량 분석)

  • Hyun, In-Tak;Lee, Jae-Ho;Yoon, Yeo-Beom;Lee, Kwang Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.12
    • /
    • pp.565-571
    • /
    • 2014
  • Nowadays, to make buildings light weight and aesthetically pleasing, curtain wall structure are commonly used. Therefore, window to wall ratio is increasing, which has caused cooling and heating load in crease in buildings as well. This phenomenon has negative impact from energy point of view. This paper analyzes window and wall convective heat gain when the slat reflectance of external and internal blinds are changed for the better understanding of the fundamentals behind the phenomena. It was observed that, if slat reflectance is increased, window transmitted solar increases and convection heat rate is clearly affected. Among six surfaces including four walls, ceiling and floor, maximum convection heat rate occurs on the south wall in summer. On the other hand, ceiling and floor showed the lowest convection heat gain, since they are shared by adjacent floors.

RIE/WET Texturing 구조의 다결정 태양전지의 특성평가

  • Seo, Il-Won;Son, Chan-Hui;Yun, Myeong-Su;Jo, Tae-Hun;Kim, Dong-Hae;Jo, Lee-Hyeon;No, Jun-Hyeong;Lee, Jae-Won;An, Jeong-Ho;Lee, Sang-Du;Cha, Seong-Deok;Gwon, Gi-Cheong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.439-439
    • /
    • 2012
  • 태양광 발전은 발전 셀의 특성상 태양광의 일사량, 태양과 셀 단면이 이루는 각도에 따라서 발전량의 차이를 가져온다. 실리콘 태양전지의 전면 texturing은 입사광의 반사율을 크게 감소시키고, 태양전지 내에서 빛의 통과길이를 증가시켜 태양전지 내의 흡수하는 빛의 양을 증가 시키는 역할을 한다. 따라서 전면 texturing은 단락전류를 증대시키는 효과를 가지고 온다. 일반적으로 texturing은 alkaline etching (WET) 공정과 reactive ion etching (RIE) 공정이 사용된다. 그리고 다결정 실리콘 태양전지의 경우에는 재료의 결정방향에 따라 식각이 되어지는 WET 공정의 경우 texturing 모양을 제어할 수 없어 효과적이지 못하는 결과를 가지고 온다. 본 연구에서는 Electroluminescence을 측정하여 RIE, WET 공정을 사용하여 만든 texturing 구조의 다결정 태양전지의 Microcrack 및 Defect, Electrode Failure, Hot spot등을 검출하였으며, ${\mu}$-PCD 측정 결과와 비교 분석하여 Micro carrier life time을 유추하여 계산하였다. 또한 반사율을 측정해본 결과 WET 공정 대비 RIE의 경우 단파장영역에서 반사율이 크게 감소하여, 상대적으로 높은 External quantum efficiency (EQE)가 측정되었다. 이는 Jsc를 증가시켜, 태양전지의 효율이 증가되는 결과를 얻을 수 있었다.

  • PDF

Synthesis and Infrared Light Reflecting Characteristics of TiO2/Mica Hybrid Composites (이산화 티타늄/마이카 복합 재료의 적외선 광반사 특성)

  • Kil, Hyun Suk;Rhee, Seog Woo
    • Applied Chemistry for Engineering
    • /
    • v.27 no.1
    • /
    • pp.16-20
    • /
    • 2016
  • In this work, we describe the synthesis and infrared light reflecting characteristics of $TiO_2$/mica hybrid composites. $TiO_2$/mica composite materials were obtained by the hydrolysis and condensation reaction of titanium isopropoxide in an aqueous solution of acetic acid in the presence of mica particles. Amorphous phase of $TiO_2$ on the surface of mica was converted to the crystalline rutile phase via anatase phase by heat treatment ($600-1000^{\circ}C$, 1-3 h) of $TiO_2$/mica composite materials, and the size of crystals was controlled by heat treatment conditions. Physicochemical properties of mica and $TiO_2$/mica composites were investigated using FE-SEM, ED-XRF, and PXRD. The solar reflectance of $TiO_2$/mica composites in the near IR region (780~2,500 nm) measured using a diffuse reflectance NIR spectrophotometer was 88.6%, which is rather higher than that of calcined pure mica (86.6%). Therefore, $TiO_2$/mica composites can be used as NIR light reflective pigments.

Effect of Hollow Sphere Size on Heat Shield Properties of hollow TiO2/polyacrylate Composites (중공구의 크기에 의한 hollow TiO2/polyacrylate 복합체의 열차단 특성)

  • Kim, Jong Seok
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.690-694
    • /
    • 2021
  • Carbon spheres (CS) were fabricated using glucose as a precursor in the hydrothermal method. Hollow TiO2 (H-TiO2) spheres with 200 nm, 500 nm, and 1,200 nm were synthesized by CS/TiO2 core-shell particles via a sol-gel and calcination method. H-TiO2 spheres with nano and micron sizes were characterized using FE-SEM, HR-TEM, and X-ray diffraction. The CIE color coordinate, solar reflectance, and heat shield temperatures of H-TiO2/polyacrylate (PA) composite film were investigated using a UV-Vis-NIR spectrometer and homemade heat insulation temperature measuring device. H-TiO2/PA composites exhibit excellent thermal insulation since the hollow structure filled with dry air has low thermal conductivity and near infrared light reflecting performance. The thermal insulation increased with increasing the hollow sphere (HS) size on H-TiO2/PA composites. The PA composite film mixed with H-TiO2 filled with 1200 nm HS reduced the heat shield temperature by 26 ℃ compared to that of the transparent glass counterpart.

Development of Normalized Difference Blue-ice Index (NDBI) of Glaciers and Analysis of Its Variational Factors by using MODIS Images (MODIS 영상을 이용한 빙하의 정규청빙지수(NDBI) 개발 및 변화요인 분석)

  • Han, Hyangsun;Ji, Younghun;Kim, Yeonchun;Lee, Hoonyol
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.4
    • /
    • pp.481-491
    • /
    • 2014
  • Blue-ice area is a glacial ice field in ice sheet, ice shelf and glaciers where snow ablation and sublimation is larger than snowfall. As the blue-ice area has large influences on the meteorite concentration mechanism and ice mass balance, it is required to quantify the concentration of blue-ice. We analyzed spectral reflectance characteristics of blue-ice, snow and cloud by using MODIS images obtained over blue-ice areas in McMurdo Dry Valleys, East Antarctica, from 2007 to 2012. We then developed Normalized Difference Blue-ice Index (NDBI) algorithm which quantifies the concentration of blue-ice. Snow and cloud have a high reflectance in visible and near-infrared (NIR) bands. Reflectance of blue-ice is high in blue band, while that lowers in the NIR band. NDBI is calculated by dividing the difference of reflectance in the blue and NIR bands by the sum of reflectances in the two bands so that NDBI = (Blue-NIR)/(Blue + NIR). NDBI calculated from the MODIS images showed that the blue-ice areas have values ranging from 0.2 to 0.5, depending on the exposure and concentration of blue-ice. It is obviously different from that of snow and cloud that has values less than 0.2 or rocks with negative values. The change of NDBI values in the blue-ice area has higher correlation with snow depth ($R^2=0.699$) than wind speed ($R^2=0.012$) or air temperature ($R^2=0.278$), all measured at a meteorological station installed in McMurdo Dry Valleys. As the snow depth increased, the NDBI value decreased, which suggests that snow depth can be estimated from NDBI values over blue-ice areas. The NDBI algorithm developed in this study will be useful for various polar research fields such as meteorite exploration, analysis of ice mass balance as well as the snow depth estimation.