• Title/Summary/Keyword: 일반 골재

Search Result 246, Processing Time 0.032 seconds

Investigation on Fire Resistance of High-Performance Cement Motar with Recycled Fine Aggregate Mixed by Two-Stage Mixing Approach (2단계 배합을 사용한 순환잔골재 혼입 고성능 시멘트 모르타르의 내화성능 연구)

  • Park, Sung-Hwan;Choi, Jun-Ho;Lee, Chi Young;Koo, Min-Sung;Chung, Chul-Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.23-29
    • /
    • 2022
  • This study was conducted to confirm the applicability of recycled aggregates as aggregates for structural concrete as a way to respond to the shortage of natural aggregates. The two-stage mixing approach developed by Tam et al. is known to be a method that can improve the mechanical performance of recycled aggregate concrete without the installation of new additional facilities. In this work, modified version of two stage mixing approach, which was used in our earlier work, was introduced to prepare mortar specimens with recycled fine aggregate, and the compressive strength and fire resistance were compared to mortar mixed with normal mixing approach. According to the experimental results from mortar with recycled fine aggregate, the use of two-stage mixing approach was found to be more effective than normal mixing approach for compressive strength development. In addition, the residual strengths of the mortar with two-stage mixing approach was higher than mortar made of normal mixing approach after exposure to 600 and 900 ℃. It is possible to manufacture high-performance cement composites with recycled fine aggregates through the active use of the two-stage mixing approach.

Properties of High Strength Recycled Aggregate Concrete (고강도 영역의 재생골재 콘크리트의 물리적 특성)

  • 이세현;서치호
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.575-583
    • /
    • 2001
  • The purpose of this study is to present the method of utilizing the recycled aggregate that are obtained from waste concrete as the concrete aggregate. We manufactured the recycled aggregate concrete with compressive strength of over 300kgf/㎠ to increase its weaker strength than the normal concrete, and compared the physical features of the recycled aggregate concrete with that of the normal concrete. As a result of the study, the mechanical performances such as compressive and tensile strength were generally reduced as the mixing rate of the recycled aggregate increased; however, it was possible to manufacture the concrete with the compressive strength of 300∼600kgf/㎠ using the adequate mixing material such as unit quantity of cement, compounding water and silicafume. However, a continuous study on long-term durability performance is required to manufacture and utilize the recycled aggregate concrete for the structure.

Mix Design of High Performance Concrete Using Maximum Density Theory (최대 밀도 이론을 이용한 고성능콘크리트의 배합 설계)

  • Lee, Seung-Han;Jung, Yong-Wook
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.377-383
    • /
    • 2007
  • In recent years the field application of high performance concrete has been increased to improve the quality and reliability of concrete structures. The mix design of the high performance concrete includes the 2 set-off mixture theory of mortar and coarse aggregate and that of paste and aggregate. The 2 set-off mixture theory of mortar and coarse aggregate has a problem of having to determine its value through repeated experiments in applying the rheological characteristics of mortar. The 2 set-off mixture theory of paste and aggregate has never been applied to high performance concrete since it doesn't take into account the relationship between optimum fine aggregate ratio and unit volume of powder nor does it consider the critical aggregate volume ratio. As the mixture theory of these high performance concretes, unlike that of general concrete, focuses on flowability and charge-ability, it does not consider intensity features in mix design also, the unit quantity of the materials used is determined by trial and error method in the same way as general concrete. This study is designed to reduce the frequency of trial and error by accurately calculating the optimum fine aggregate ratio, which makes it possible to minimize the aperture of aggregate in use by introducing the maximum density theory to the mix design of high performance concrete. Also, it is intended to propose a simple and reasonable mix design for high performance concrete meeting the requirements for both intensity and flowability. The mix design proposed in this study may reduce trial and error and conveniently produce high performance concrete which has self-chargeability by using more than the minimum unit volume of powder and optimum fine aggregate with minimum porosity.

The Experimental Study on the Properties on Concrete to use the Electric Arc Furnance Slag as Fine Aggregate (전기로슬래그 잔골재를 사용한 콘크리트의 기초물성에 관한 실험적 연구)

  • Choi, Sung-Woo;Kim, Jeong-Sik;Jeun, Jun-Young;Kim, Eun-Kyum;Ryu, Deuk-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.389-392
    • /
    • 2008
  • Electric-furnace-slag has the expansion, due to the reaction with water and free Cao. So compared with the blast-furnace-slag, the recycling range of EFS is subject to restriction. But the expansive reaction of EFS is removed, the it is possible to use aggregate for concrete. This study is the basic properties of concrete to used stabilized EFS(oxidized EFS). The EFS is used fine aggregate in concrete, and replaced by sea-sand(natural sand). The replacement ratio are 0%, 25%, 50%, 75%, 100%. The result of study, to used oxidized EFS-sand, the flowability and the compressive strength is increased. Also it is possible to reduce the Bleeding. It is necessary more study about using the EFS aggregate, like the durability, the mechanical property for concrete

  • PDF

The Effects of Aggregate Gradations and SBS Modifier on the Viscoelastic Properties and Fatigue Performance of Asphalt Mixtures (골재의 입도와 SBS 개질재가 아스팔트 혼합물의 점탄성 물성 및 피로 공용성에 미치는 영향)

  • Lee, Hyun-Jong;Choi, Ji-Young;Cha, Soon-Man
    • International Journal of Highway Engineering
    • /
    • v.2 no.3
    • /
    • pp.129-144
    • /
    • 2000
  • This paper presents the characteristics of viscoelastic properties and fatigue performance of SBS modified asphalt mixtures depending on the aggregate gradation. Dynamic shear rheometer (DSR) and uniaxial tensile creep tests are performed to analyze the thermomechanical behavior of asphalt binders and mixtures, respectively. Uniaxial tensile fatigue tests for seven different asphalt mixtures are conducted to evaluate the effects of aggregate gradations and SBS modifier on the fatigue performance of the mixtures. DSR and uniaxial tensile creep tests results show that the SBS modified asphalt mixtures have better rutting resistance than the unmodified mixtures at high temperatures regardless of the aggregate gradations used. Fatigue factor $G^*sin\delta$ in Superpave binder specification may not be adequate for evaluating the fatigue Performance of asphalt mixtures. It is observed from uniaxial tensile fatigue tests that SBS modified asphalt mixtures compared to unmodified mixtures have ten times longer fatigue lives regardless of the aggregate gradations(dense, SMA, and Superpave gradations) used in the mixtures. The better fatigue performance of the SBS modified mixtures is observed even after long-term aging process. The effect of aggregate gradations on the fatigue performance is not as significant as the SBS modifier. The cellulose fiber added in the SMA mixture has negligible effects on the viscoelastic Properties and fatigue performance of the mixture, but is effective in reducing draindown. Although the SBS modified asphalt binder is used, it may be necessary to add the cellulose fiber into the SMA mixture to prevent the draindown.

  • PDF

Comparison of Performance with Backfill Inclination Slope and Shape in Railway Abutment and Transitional Zone Using Centrifuge Model Tester (원심모형실험기를 이용한 철도 교대접속부 배면 기울기 및 형상에 따른 성능비교)

  • Choi, Chan-Yong;Kim, Hun-Ki;Park, Jung-Hyun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.1
    • /
    • pp.85-93
    • /
    • 2018
  • A existing standard design section of transitional zone between bridge and earthwork section in high speed railway should be designed to gradually change support stiffness from bridge abutment to backfill side that were placed on cemented stabilized gravel, general gravel, soil materials. The larger the backfill slope of the general gravel and soil was more structurally stable, but there is no clear reason about them. In this study, it was compared with settlement and bearing capacity of backfill area in currently design and alternating backfill slope section using large centrifuge tester. As the experimental results, it was showed that the 1:2 slope and 1:1.5 slope have almost similar bearing capacity behavior under the load stage as railway loading level.

Application of Discoll Method to Blend Fine Aggregate for Concrete (콘크리트용 잔골재 혼합을 위한 Driscoll 방법의 적용)

  • Lee, Seong Haeng;Ham, Hyeong Gil;Kim, Tae Wan;Oh, Yong Ju
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.178-185
    • /
    • 2011
  • Recently depletion of natural resources makes a deficiency of sand aggregation in the concrete works. In this study, the quality characteristics of concrete and aggregate according to blending fine aggregate in the river sand and the crash sand was analyzed by Normal method and Driscoll method which has used mixing of fine aggregate for asphalt mostly. Application of Discoll method to blend fine aggregate for concrete was studied in the first step to blend fine aggregates concrete. The fineness modulus, grading, slump, air content and compressive strength were tested by the two method, the results of Driscoll method was very similar to degree of err limits in comparison with those of Normal method in the same condition. As a result, Driscoll method is reasonable to use the fine aggregates mixture for concrete in river sand and crash sand.

The carbonation of self-consolidating concrete using lightweight aggregate (경량골재를 사용한 자기충전 콘크리트의 탄산화)

  • Kim, Yong-Jic;Kim, Young-Jin;Choi, Yun-Wang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.245-246
    • /
    • 2009
  • This paper presents the development of lightweight aggregate self-consolidating concrete using lightweight aggregates. Lightweight concrete is known for its advantage of reducing the self-weight of the structures, reducing the areas of sectional members as well as making the construction convenient. Thus the construction cost can be saved when applied to structures such as long-span bridge and high rise building. Therefore experimental tests were performed as such mechanical properties and carbonation of self-consolidating concrete using lightweight aggregates.

  • PDF

Effect of the Broken Red Bricks on the Mechanical Properties of Reinforced Concrete Beams (부순 적벽돌 혼입량에 따른 철근콘크리트 보의 역학적 특성에 관한 연구)

  • Kim, Jeong Sup;Shin, Yong Seok;Cho, Cheol Hee;No, Sung Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.2
    • /
    • pp.83-90
    • /
    • 2008
  • The purpose of this study is to attempt to use broken red brick, which is categorized as impurities of circular aggregate to thick aggregate, as a replacement for concrete. Through the material test and performance test for each mixing rate of the broken red brick (0%, 30%, 60%), the following conclusion was reached by studying the material and structural characteristics of circular aggregate to the concrete. Even though broken red brick, which is categorized as impurities of circular aggregate, is mixed 30% with normal rubble, the compression strength, intensity strength, and curving strength was similar to that of concrete that uses normal rubble. Therefore, concrete beam made with broken red brick can be applied to the real construction field. Also, the study regarding the cutting test of the concrete that uses broken red brick and regarding applying and mixing admixture that can increase the ductility factor will be required in the future.

Durability of Recycled Aggregate Concrete Incorporating Fly Ash (플라이애쉬를 혼합한 재생골재 콘크리트의 내구성)

  • 신재인;류택은;양승규;구봉근
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.1
    • /
    • pp.23-29
    • /
    • 2001
  • This study presented the experimental results on the durability properties of recycled aggregate concrete incorporating fly ash. The main experimental variables were the substitution ratio of recycled aggregate and fly ash, where the substitution ratios of recycled aggregate were 0, 30, and 50%, and those of fly ash were 0, 10, 20, and 30%. The tests for evaluating compressive strength, freezing-thawing resistance, and drying shrinkage were conducted for each specimen. As a result, the compressive strength and the durability of the recycled aggregate concrete were compared from those of ordinary concrete. The followings were conclusion; The compressive strengths of recycled aggregate concrete were less than those of ordinary concrete by 5-10%. However, the durability factor of recycled aggregate concrete remained above 90% at the substitution ratio of 30%. The quality of recycled aggregate concrete were improved by substitution at the range of less that 20% of fly ash and 30% of recycled aggregate.