• Title/Summary/Keyword: 일반화 극단분포

Search Result 14, Processing Time 0.023 seconds

Prediction of extreme rainfall with a generalized extreme value distribution (일반화 극단 분포를 이용한 강우량 예측)

  • Sung, Yong Kyu;Sohn, Joong K.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.4
    • /
    • pp.857-865
    • /
    • 2013
  • Extreme rainfall causes heavy losses in human life and properties. Hence many works have been done to predict extreme rainfall by using extreme value distributions. In this study, we use a generalized extreme value distribution to derive the posterior predictive density with hierarchical Bayesian approach based on the data of Seoul area from 1973 to 2010. It becomes clear that the probability of the extreme rainfall is increasing for last 20 years in Seoul area and the model proposed works relatively well for both point prediction and predictive interval approach.

Prediction of recent earthquake magnitudes of Gyeongju and Pohang using historical earthquake data of the Chosun Dynasty (조선시대 역사지진자료를 이용한 경주와 포항의 최근 지진규모 예측)

  • Kim, Jun Cheol;Kwon, Sookhee;Jang, Dae-Heung;Rhee, Kun Woo;Kim, Young-Seog;Ha, Il Do
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.1
    • /
    • pp.119-129
    • /
    • 2022
  • In this paper, we predict the earthquake magnitudes which were recently occurred in Gyeongju and Pohang, using statistical methods based on historical data. For this purpose, we use the five-year block maximum data of 1392~1771 period, which has a relatively high annual density, among the historical earthquake magnitude data of the Chosun Dynasty. Then, we present the prediction and analysis of earthquake magnitudes for the return level over return period in the Chosun Dynasty using the extreme value theory based on the distribution of generalized extreme values (GEV). We use maximum likelihood estimation (MLE) and L-moments estimation for parameters of GEV distribution. In particular, this study also demonstrates via the goodness-of-fit tests that the GEV distribution can be an appropriate analytical model for these historical earthquake magnitude data.

Parametric nonparametric methods for estimating extreme value distribution (극단값 분포 추정을 위한 모수적 비모수적 방법)

  • Woo, Seunghyun;Kang, Kee-Hoon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.531-536
    • /
    • 2022
  • This paper compared the performance of the parametric method and the nonparametric method when estimating the distribution for the tail of the distribution with heavy tails. For the parametric method, the generalized extreme value distribution and the generalized Pareto distribution were used, and for the nonparametric method, the kernel density estimation method was applied. For comparison of the two approaches, the results of function estimation by applying the block maximum value model and the threshold excess model using daily fine dust public data for each observatory in Seoul from 2014 to 2018 are shown together. In addition, the area where high concentrations of fine dust will occur was predicted through the return level.

Comparison of log-logistic and generalized extreme value distributions for predicted return level of earthquake (지진 재현수준 예측에 대한 로그-로지스틱 분포와 일반화 극단값 분포의 비교)

  • Ko, Nak Gyeong;Ha, Il Do;Jang, Dae Heung
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.1
    • /
    • pp.107-114
    • /
    • 2020
  • Extreme value distributions have often been used for the analysis (e.g., prediction of return level) of data which are observed from natural disaster. By the extreme value theory, the block maxima asymptotically follow the generalized extreme value distribution as sample size increases; however, this may not hold in a small sample case. For solving this problem, this paper proposes the use of a log-logistic (LLG) distribution whose validity is evaluated through goodness-of-fit test and model selection. The proposed method is illustrated with data from annual maximum earthquake magnitudes of China. Here, we present the predicted return level and confidence interval according to each return period using LLG distribution.

Analysis of Extreme Values of Daily Percentage Increases and Decreases in Crude Oil Spot Prices (국제현물원유가의 일일 상승 및 하락율의 극단값 분석)

  • Yun, Seok-Hoon
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.5
    • /
    • pp.835-844
    • /
    • 2010
  • Tools for statistical analysis of extreme values include the classical annual maximum method, the modern threshold method and variants improving the second one. While the annual maximum method is to t th generalized extreme value distribution to the annual maxima of a time series, the threshold method is to the generalized Pareto distribution to the excesses over a high threshold from the series. In this paper we deal with the Poisson-GPD method, a variant of the threshold method with a further assumption that the total number of exceedances follows the Poisson distribution, and apply it to the daily percentage increases and decreases computed from the spot prices of West Texas Intermediate, which were collected from January 4th, 1988 until December 31st, 2009. According to this analysis, the distribution of daily percentage increases as well as decreases turns out to have a heavy tail, unlike the normal distribution, which coincides well with the general phenomenon appearing in the analysis of lots of nowaday nancial data.

Estimation of Car Insurance Loss Ratio Using the Peaks over Threshold Method (POT방법론을 이용한 자동차보험 손해율 추정)

  • Kim, S.Y.;Song, J.
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.1
    • /
    • pp.101-114
    • /
    • 2012
  • In car insurance, the loss ratio is the ratio of total losses paid out in claims divided by the total earned premiums. In order to minimize the loss to the insurance company, estimating extreme quantiles of loss ratio distribution is necessary because the loss ratio has essential prot and loss information. Like other types of insurance related datasets, the distribution of the loss ratio has heavy-tailed distribution. The Peaks over Threshold(POT) and the Hill estimator are commonly used to estimate extreme quantiles for heavy-tailed distribution. This article compares and analyzes the performances of various kinds of parameter estimating methods by using a simulation and the real loss ratio of car insurance data. In addition, we estimate extreme quantiles using the Hill estimator. As a result, the simulation and the loss ratio data applications demonstrate that the POT method estimates quantiles more accurately than the Hill estimation method in most cases. Moreover, MLE, Zhang, NLS-2 methods show the best performances among the methods of the GPD parameters estimation.

Extreme Quantile Estimation of Losses in KRW/USD Exchange Rate (원/달러 환율 투자 손실률에 대한 극단분위수 추정)

  • Yun, Seok-Hoon
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.5
    • /
    • pp.803-812
    • /
    • 2009
  • The application of extreme value theory to financial data is a fairly recent innovation. The classical annual maximum method is to fit the generalized extreme value distribution to the annual maxima of a data series. An alterative modern method, the so-called threshold method, is to fit the generalized Pareto distribution to the excesses over a high threshold from the data series. A more substantial variant is to take the point-process viewpoint of high-level exceedances. That is, the exceedance times and excess values of a high threshold are viewed as a two-dimensional point process whose limiting form is a non-homogeneous Poisson process. In this paper, we apply the two-dimensional non-homogeneous Poisson process model to daily losses, daily negative log-returns, in the data series of KBW/USD exchange rate, collected from January 4th, 1982 until December 31 st, 2008. The main question is how to estimate extreme quantiles of losses such as the 10-year or 50-year return level.

Evaluation of the impact of typhoon on daily maximum precipitation (태풍이 일 최대강수량에 미치는 영향 평가)

  • Yang, Miyeon;Yoon, Sanghoo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.6
    • /
    • pp.1415-1425
    • /
    • 2017
  • Typhoons are accompanied by strong wind and heavy rains. It causes casualties and property damage on the Korean peninsula every year. The effect of typhoon to daily precipitation should be quantified to prevent the damage of typhoon. Daily precipitation, maximum wind speed and, mean wind speed data was collected from 60 weather stations between 1976 and 2016. The parameters of the generalized extreme value distribution were estimated through the maximum likelihood estimation and the L-moment estimation. The impact of a typhoon can be obtained through a comparison of return levels between the whole data and typhoon excluded data. We conclude that the eastern and southern coastline are exposed to the risk of heavy rainfall which is caused by typhoon.

Statistical Modeling for Forecasting Maximum Electricity Demand in Korea (한국 최대 전력량 예측을 위한 통계모형)

  • Yoon, Sang-Hoo;Lee, Young-Saeng;Park, Jeong-Soo
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.1
    • /
    • pp.127-135
    • /
    • 2009
  • It is necessary to forecast the amount of the maximum electricity demand for stabilizing the flow of electricity. The time series data was collected from the Korea Energy Research between January 2000 and December 2006. The data showed that they had a strong linear trend and seasonal change. Winters seasonal model, ARMA model were used to examine it. Root mean squared prediction error and mean absolute percentage prediction error were a criteria to select the best model. In addition, a nonstationary generalized extreme value distribution with explanatory variables was fitted to forecast the maximum electricity.

An Analysis of Daily Maximum Traffic Accident Using Generalized Extreme Value Distribution (일반화 극단치분포를 이용한 일 최대 교통사고 분석)

  • Kim, Junseok;Kim, Daesung;Yoon, Sanghoo
    • Journal of Digital Convergence
    • /
    • v.18 no.10
    • /
    • pp.33-39
    • /
    • 2020
  • In order to cope with traffic accidents efficiently, the maximum number of traffic accidents, deaths and serious injuries that can occur during the day should be presented quantitatively. In order to examine the characteristics of traffic accidents in different regions, it was divided into the Seoul metropolitan area, Chungcheong area, Gyeongbuk area, Honam area, and Gyeongnam area and was suitable for the generalized extreme value distribution (GEV). The parameters of the GEV distribution were estimated by the L-moments, and the Anderson-Darling test and the Cramer-von Mises test confirmed the suitability of the distribution. According to the analysis, the maximum number of traffic accidents that can occur once every 50 years is 401 in the Seoul metropolitan area, 168 in the South Gyeongsang region, 455 in the North Gyeongsang region, 136 in the Chungcheong region and 205 in the South Jeolla region. Compared to the Seoul metropolitan area, which has a large population and car registration, the number of traffic accidents is relatively high due to the large area, mountainous areas, and logistics movement caused by the industrial complex.