• Title/Summary/Keyword: 일반화된 선형모형

Search Result 150, Processing Time 0.023 seconds

Small Area Estimation via Generalized Estimating Equations and the Panel Analysis of Unemployment Rates (일반화추정방정식을 활용한 소지역 추정과 실업률패널분석)

  • Yeo, In-Kwon;Son, Kyoung-Jin;Kim, Young-Won
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.4
    • /
    • pp.665-674
    • /
    • 2008
  • Most of existing studies about the small area estimation deal with the estimation of parameters based on cross-sectional data. However, since many official statistics are repeatedly collected at a regular interval of time, for instance, monthly, quarterly, or yearly, we need an alternative model which can handle characteristics of these kinds of data. In this paper, we investigate the generalized estimating equation which can model time-dependency among response variables and is useful to analyze repeated measurement or longitudinal data. We compare with the generalized linear model and the generalized estimating equation through the estimation of unemployment rates of 25 areas in Gyeongsangnam-do and Ulsan. The data consist of the status of employment and some covariates from January to December 2005.

Generalization of modified systematic sampling and regression estimation for population with a linear trend (선형추세를 갖는 모집단에 대한 변형계통표집의 일반화와 회귀추정법)

  • Kim, Hyuk-Joo;Kim, Jeong-Hyeon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.6
    • /
    • pp.1103-1118
    • /
    • 2009
  • When we wish to estimate the mean or total of a finite population, the numbering of the population units is of importance. In this paper, we have proposed two methods for estimating the mean or total of a population having a linear trend, for the case when the reciprocal of the sampling fraction is an even number and the sample size is an odd number. The first method involves drawing a sample by using a method which is a generalization of Singh et al's (1968) modified systematic sampling, and using interpolation in determining the estimator. The second method involves selecting a sample by modified systematic sampling, and estimating the population parameters by the regression estimation method. Under the criterion of the expected mean square error based on Cochran's (1946) infinite superpopulation model, the proposed methods have been compared with existing methods. We have also made a comparison between the two proposed methods.

  • PDF

Dynamic Nonlinear Prediction Model of Univariate Hydrologic Time Series Using the Support Vector Machine and State-Space Model (Support Vector Machine과 상태공간모형을 이용한 단변량 수문 시계열의 동역학적 비선형 예측모형)

  • Kwon, Hyun-Han;Moon, Young-Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3B
    • /
    • pp.279-289
    • /
    • 2006
  • The reconstruction of low dimension nonlinear behavior from the hydrologic time series has been an active area of research in the last decade. In this study, we present the applications of a powerful state space reconstruction methodology using the method of Support Vector Machines (SVM) to the Great Salt Lake (GSL) volume. SVMs are machine learning systems that use a hypothesis space of linear functions in a Kernel induced higher dimensional feature space. SVMs are optimized by minimizing a bound on a generalized error (risk) measure, rather than just the mean square error over a training set. The utility of this SVM regression approach is demonstrated through applications to the short term forecasts of the biweekly GSL volume. The SVM based reconstruction is used to develop time series forecasts for multiple lead times ranging from the period of two weeks to several months. The reliability of the algorithm in learning and forecasting the dynamics is tested using split sample sensitivity analyses, with a particular interest in forecasting extreme states. Unlike previously reported methodologies, SVMs are able to extract the dynamics using only a few past observed data points (Support Vectors, SV) out of the training examples. Considering statistical measures, the prediction model based on SVM demonstrated encouraging and promising results in a short-term prediction. Thus, the SVM method presented in this study suggests a competitive methodology for the forecast of hydrologic time series.

Small area estimations for disease mapping by using spatial model (질병지도 작성을 위해 공간모형을 이용한 소지역 추정)

  • An, Daeseong;Han, Junhee;Yoon, Taeho;Kim, Changhoon;Noh, Maengseok
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.1
    • /
    • pp.101-109
    • /
    • 2015
  • SMRs (standardized mortality rates) for major diseases, accidents, cancer are considered in small areas of administrative units such as Eup/Myeon/Dong from years 2005 to 2008. Due to small sample issue in small areas, the precision of directly estimated crude SMR for each area can be low. In this study, we consider the HGLM (hierarchical generalized linear model) with MRF (Markov random field) to account for the spatial correlations among the small areas. The effects of covariates for cause of mortality by Dongs in Seoul and disease maps based on the estimated SMR are presented. The results suggest how we analyze and interpret the difference in mortalities by small areas such as Dongs by revealing the spatial patterns.

A Study on the Generalization of Multiple Linear Regression Model for Monthly-runoff Estimation (선형회귀모형(線型回歸模型)에 의한 하천(河川) 월(月) 유출량(流出量) 추정(推定)의 일반화(一般化)에 관한 연구(硏究))

  • Kim, Tai Cheol
    • Korean Journal of Agricultural Science
    • /
    • v.7 no.2
    • /
    • pp.131-144
    • /
    • 1980
  • The Linear Regression Model to extend the monthly runoff data in the short-recorded river was proposed by the author in 1979. Here in this study generalization precedure is made to apply that model to any given river basin and to any given station. Lengthier monthly runoff data generated by this generalized model would be useful for water resources assessment and waterworks planning. The results are as follows. 1. This Linear Regression Model which is a transformed water-balance equation attempts to represent the physical properties of the parameters and the time and space varient system in catchment response lumpedly, qualitatively and deductively through the regression coefficients as component grey box, whereas deterministic model deals the foregoings distributedly, quantitatively and inductively through all the integrated processes in the catchment response. This Linear Regression Model would be termed "Statistically deterministic model". 2. Linear regression equations are obtained at four hydrostation in Geum-river basin. Significance test of equations is carried out according to the statistical criterion and shows "Highly" It is recognized th at the regression coefficients of each parameter vary regularly with catchment area increase. Those are: The larger the catchment area, the bigger the loss of precipitation due to interception and detention storage in crease. The larger the catchment area, the bigger the release of baseflow due to catchment slope decrease and storage capacity increase. The larger the catchment area, the bigger the loss of evapotranspiration due to more naked coverage and soil properties. These facts coincide well with hydrological commonsenses. 3. Generalized diagram of regression coefficients is made to follow those commonsenses. By this diagram, Linear Regression Model would be set up for a given river basin and for a given station (Fig.10).

  • PDF

Unified Approach to Coefficient of Determination $R^2$ Using Likelihood Distancd (우도거리에 의한 결정계수 $R^2$에의한 통합적 접근)

  • 허명회;이종한;정진환
    • The Korean Journal of Applied Statistics
    • /
    • v.4 no.2
    • /
    • pp.117-127
    • /
    • 1991
  • Coefficient of determination $R^2$ is most frequently used descriptive measure in practical use of linear regression analysis. But there have been controversies on defining this measure in the cases of linear regression without the intercept, weighted linear regression and robust linear regression. Several authors such as Kvalseth(1985) and Willet and Singer(1988) proposed many variations of $R^2$ to meet the situations. However, theire measures are not satisfactory due to the lack of a universal principle. In this study, we propose a unfied approach to defining the coefficient of determination $R^2$ using the concept of likelihood distance. This new measure is in good accordance with typical $R^2$ in linear regression and, moreover, can be applied to nonlinear regression models and generalized linear models such as logit and log-linear models.

  • PDF

Estimating soil moisture using machine learning approach: A Case Study to Yongdam watershed (기계학습 기반의 토양함수 예측 기법 개발 (용담댐 시험유역을 중심으로))

  • Huy, Nguyen Dinh;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.167-167
    • /
    • 2018
  • 토양수분은 토양에 포함된 평균 수분량을 나타내며 수문 순환 관점에서 매우 중요한 수문변량 중 하나이다. 본 연구에서는 대표적인 기계학습 방법인 Support Vector Machine (SVM)을 이용한 토양 함수 예측 기법을 개발하고자 하며, 예측인자로서 원격 탐측 기반의 토양함수자료, 강수량, 온도 등을 활용하고자 한다. SVM은 Kernel 함수를 이용하여 복잡한 비선형 관계를 선형 가정을 통해서 해석하는 기계학습 방법으로서 전역모델(global model)로서 다양한 수문기상분야에 적용이 이루어지고 있다. SVM의 장점은 일정 부분의 오차를 허용함으로서 모형의 일반화 측면에서 기존 인공신경망(artificial neural network, ANN)에 비해 우수한 성능을 나타내며, 특히 예측모형으로서 적용성이 매우 크다. 본 연구에서는 과거 토양 함수 자료와 강수, 온도, 위성 관측 기반 정보 등을 이용하여 모형을 적합시키고 이를 미계측 유역으로 확장하는데 연구의 목적이 있으며, 본 연구를 통해 제안된 모형은 용담댐 시험유역을 대상으로 적용되며 기존 ANN 모형 및 다중회귀분석 결과와 비교를 통해 모형의 적합성을 평가하고자한다.

  • PDF

Asymptotic Relative Efficiency for New Score Functions in Rank Regression Models (순위회귀모형의 새로운 스코어 함수의 효율성 연구)

  • 최영훈
    • The Korean Journal of Applied Statistics
    • /
    • v.17 no.2
    • /
    • pp.269-280
    • /
    • 2004
  • We explore the selection of r and s that provides improvement over the Wilcoxon scores under the asymmetric distributions we encounter in practice. We select 0 〈 r 〈 1, s 〉 1 for right-skewed distribution and r 〉 1,0 〈 s 〈 1 for left-skewed distributions from the perspective plots. We also study the association between the desirable r and s and the test statistic for skewness.

Survey of Models for Random Effects Covariance Matrix in Generalized Linear Mixed Model (일반화 선형혼합모형의 임의효과 공분산행렬을 위한 모형들의 조사 및 고찰)

  • Kim, Jiyeong;Lee, Keunbaik
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.2
    • /
    • pp.211-219
    • /
    • 2015
  • Generalized linear mixed models are used to analyze longitudinal categorical data. Random effects specify the serial dependence of repeated outcomes in these models; however, the estimation of a random effects covariance matrix is challenging because of many parameters in the matrix and the estimated covariance matrix should satisfy positive definiteness. Several approaches to model the random effects covariance matrix are proposed to overcome these restrictions: modified Cholesky decomposition, moving average Cholesky decomposition, and partial autocorrelation approaches. We review several approaches and present potential future work.

Gamma Mixed Model to Improve Sib-Pair Linkage Analysis (감마 혼합 모형을 통한 반복 측정된 형제 쌍 연관 분석 사례연구)

  • Kim, Jeonghwan;Suh, Young Ju;Won, Sungho;Nah, Jeung Weon;Lee, Woojoo
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.2
    • /
    • pp.221-230
    • /
    • 2015
  • Traditionally, sib-pair linkage analysis with repeated measures has employed linear mixed models, but it suffers from the lack of power to find genetic marker loci associated with a phenotype of interest. In this paper, we use a gamma mixed model to improve sib-pair linkage analysis and compare it with a linear mixed model in terms of power and Type I error. We illustrate that the use of gamma mixed model can achieve higher power than linear mixed model with Genetic Analysis Workshop 13 data.