• 제목/요약/키워드: 인터쿨러

검색결과 31건 처리시간 0.028초

커먼레일 디젤기관의 인터쿨러 대체용 볼텍스 튜브 장치의 성능특성에 관한 실험 연구 (An Experimental Study on the Performance Characteristics of the Vortex Tube for Substitution of the Intercooler in a Common-rail Diesel Engine)

  • 임석연;최두석;류정인
    • 한국자동차공학회논문집
    • /
    • 제16권3호
    • /
    • pp.172-178
    • /
    • 2008
  • An object of this study is to confirm performance characteristics of the vortex tube apparatus for substitution of the intercooler in a common-rail diesel engine. The turbo pressure, the intake air flow rate and the ${\Delta}T_c$ decrease ratio of the intercooler were measured in a experimental engine. The vortex tube apparatus was made after confirmation of the geometric phenomena in fundamental experiments. To investigate energy separation characteristics of the vortex tube, the measured turbo pressure was applied to the vortex tube inlet and the ${\Delta}T_c$ decrease ratio was compared with one of the intercooler in the cold air mass flow ratio similar to the intake air flow rate of the experimental engine. From the results, we found that the energy separation ratio is increased according to of the inlet pressure and the ${\Delta}T_c$ decrease ratio of the vortex tube apparatus is higher than one of the intercooler at low engine speed and engine load of medium and low.

고고도 장기체공 무인기용 수소 왕복 엔진의 다단터보차저용 인터쿨러 설계 및 해석 (Intercooler for Multi-stage Turbocharger Design and Analysis of the Hydrogen Reciprocating Engine for HALE UAV)

  • 이양지;이동호;강영석;임병준
    • 한국유체기계학회 논문집
    • /
    • 제20권1호
    • /
    • pp.65-73
    • /
    • 2017
  • Intercoolers for multi-stage turbocharger of the hydrogen reciprocating engine for HALE UAV are installed for reducing the charged air inlet temperature of the engine. The intercooler is air to air, cross flow, plate-fin type and the fin configuration is offset-strip fin which is referenced from the heat exchanger of the ERAST. Most of HALE UAV's cruising altitude is 60,000 ft and the density of air for this altitude is very low compared to sea level. Therefore the required heat transfer area for the HALE UAV is about three-times bigger than the sea level. Consequently, it is essential to design to meet the required efficiency of intercooler in the range of not excessively growing the weight of the heat exchanger. The quasi-one dimensional heat transfer design/analysis for satisfying the requirement of the engine are written in this paper. The numerical analyses for estimating the coolant flow rate of the engine bay and pressure loss in the header and core are also summarized.

액-가스 열교환기를 적용한 천연가스 액화공정 성능 특성 (Performance Characteristics of Natural Gas Liquefaction Process using Liquid-gas Heat Exchanger)

  • 윤정인;유선일;오승택;이호생;이상규;최건형
    • 한국가스학회지
    • /
    • 제13권6호
    • /
    • pp.44-48
    • /
    • 2009
  • 본 연구에서는 천연가스 액화 플랜트 산업에서의 핵심 기술인 액화공정 개발을 위해 두 가지 2단 압축 방식의 액화 사이클의 성능을 시뮬레이션 하였다. Process1은 케스케이드 액화공정을 기초로 하여 프로판, 에틸렌, 메탄 사이클 모두 인터쿨러가 적용된 것이다. Process 2는 위의 공정에 메탄과 에틸렌 사이클 사이에 액-가스 열교환기를 적용하였고, Process 3은 위의 공정에 에틸렌과 프로판 사이클 사이에 액-가스 열교환기를 추가로 적용하였으며, 인터쿨러를 적용한 케스케이드 공정과 성능을 비교하였다. Process 2의 COP는 Process 1보다 14.0%정도 높게 나타났고, LNG 단위 생산량 당 소비 동력은 11.5% 정도 낮게 나타났다.

  • PDF

Spiral 구조 EGR Cooler의 열유동 특성 평가 (Evaluation of Thermal Fluid Characteristics for EGR Cooler with Spiral Type)

  • 허형석;원종필;박경석
    • 한국자동차공학회논문집
    • /
    • 제11권6호
    • /
    • pp.44-50
    • /
    • 2003
  • Cooled EGR is an effective method for the reduction of NOx from a diesel engine and an EGR Cooler is the key component of the system. High efficiency, low pressure loss and compactness are required for the EGR Cooler. To meet these requirements, new geometric tube must be developed. In this paper, a full size EGR cooler test bench has been developed to validate the CFD flow and heat transfer models. Fluid temperature and pressure drop measurements are provided. fillet temperature is $200^{\circ}C$ and $300^{\circ}C$, and flow rates vary from 0.008 kg/sec to 0.019 kg/sec. The gas flow and heat transfer in a single tube cooler have been studied using computational fluid dynamics(CFD). Analysis has been carried out in a single tube with a plain tube and six spirally enhanced tubes of varying pitch to depth ratio(p/e).

터보 차져와 인터쿨러를 장착한 디젤기관의 시뮬레이션 연구 (A Simulation Study of Diesel Engine with Trubocharger and Intercooler)

  • 한영출
    • 한국생산제조학회지
    • /
    • 제9권4호
    • /
    • pp.123-130
    • /
    • 2000
  • Studies on the turbocharger itself or various aspects generated from turbocharged engine have been made on the performance for the natural aspirated engine equipped with the turbocharger and the intercooler. In this study, the performance prediction program based on turbocharger theory is developed for simulation which may reduced the cost and the trial -and-error time. The program is verified with the experimental results for 11, 000 cc diesel engine with the turbocharger and the intercooler . Also, various factors which are invisible in experiment are predicted using this program.

  • PDF

소형 선박 디젤엔진의 질소산화물 저감에 관한 연구 (A Study on NOx Reduction for a Small Marine Diesel Engine)

  • 심한섭
    • 한국기계가공학회지
    • /
    • 제10권5호
    • /
    • pp.79-84
    • /
    • 2011
  • Air pollutants from a small marine diesel engine are increasing and the IMO(International Marine Organization) regulation asked for its reduction. In this study, NOx reduction technologies such as improvement of various cooling systems are applied to the small marine diesel engine. The various cooling systems are a intercooler, a heat exchanger for engine coolant, and an exhaust manifold by water cooling. These systems are tested on an engine dynamometer and a exhaust gas analyzer by a marine diesel engine test regulation. Test results are shows that the small marine engine are satisfied the IMO NOx regulations; Tire II.

자동차용 고무호스의 진동 절연성능 향상에 관한 연구 (Improvement of Insulation Performance of Vehicle Rubber Hoses)

  • 정헌섭;민병권;이성훈;우희수;박현호
    • 한국소음진동공학회논문집
    • /
    • 제22권9호
    • /
    • pp.837-844
    • /
    • 2012
  • We considered an approach in terms of materials for improvement of insulation performance of vehicle rubber hoses. Ethylene propylene rubber(EPDM) for heater hoses in cooling system and acrylic rubber(AR) for intercooler hose in intake system were chosen for mixing for the vibration and noise performance. We modified EPDM and AR through changing compound of base polymer, reinforcement fillers and additives. Dynamic mechanical analysis(DMA) was used to measure viscoelastic properties such as shear modulus and loss factor($tan{\delta}$). Vehicle acceleration test was also conducted to observe indoor changes in insulation performance of hoses.

13 리터급 터보.인터쿨러 디젤 엔진의 얼터네이터 소음 반사 효과에 관한 연구 (A Study of the Noise Reflection Effect of an Alternator in a 13-liter Turbo-intercooler Diesel Engine)

  • 최성배
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권3호
    • /
    • pp.381-387
    • /
    • 2003
  • Engine noise consists of the noise radiated from an engine structure and noises from engine ancillaries such as a turbocharger fuel injection system, and alternator. The noise of these ancillaries might be incorrectly evaluated in the aspect of the noise contribution to engine noise because the noise reflection effect of their neighbor engine structure is easily ignored. Consequently, noise source identification should be misled. This study investigates the fact that the engine structure located around an alternator reflects alternator noise, and the reflected noise acts as another alternator noise source in a heavy-duty diesel engine. The result shows that the alternator noise can be correctly estimated in engine noise by properly including the noise reflection effect.

터보 인터쿨러 커먼레일 디젤기관의 매연, CO 및 $CO_2$ 배출물에 미치는 플라즈마 EGR 조합시스템의 영향에 관한 연구 (A Study on Effect of a Combined Plasma EGR System upon Soot CO and $CO_2$ Emissions in Turbo Intercooler Common-rail Diesel Engines)

  • 배명환;구영진;이봉섭;윤일중
    • 한국자동차공학회논문집
    • /
    • 제14권4호
    • /
    • pp.1-11
    • /
    • 2006
  • The aim in this study is to develop the combined EGR system with a non-thermal plasma reactor for reducing exhaust emissions and improving fuel economy in turbo intercooler ECU common-rail diesel engines. In this study, the characteristics of soot, CO and $CO_2$ emissions under four kinds of engine loads are experimentally investigated by using a four-cycle, four-cylinder, direct injection type, water-cooled turbo intercooler ECU common-rail diesel engine with a combined plasma exhaust gas recirculation(EGR) system operating at three kinds of engine speeds. The EGR and non-thermal plasma reactor system are used to reduce $NO_x$ emissions, and the non-thermal plasma reactor and turbo intercooler system are used to reduce soot and THC emissions. The plasma system is a flat-to-flat type reactor operated by a plasma power supply. The fuel is sprayed by pilot and main injections at the variable injection timing between BTDC $15^{\circ}$ and ATDC $1^{\circ}$ according to experimental conditions. It is found that soot emissions with increasing EGR rate are increased, but are decreased as the applied electrical voltage of the non-thermal plasma reactor is elevated at the same engine speed and load. Results also show that CO and $CO_2$ emissions are increased as EGR rate is elevated, and CO emissions are increased, but $CO_2$ emissions are decreased as the applied electrical voltage of the non-thermal plasma reactor is elevated at the same engine speed and load.