• Title/Summary/Keyword: 인체 영역 통신

Search Result 46, Processing Time 0.038 seconds

UWB Propagation Measurements in Body Area Network Scenarios (인체 영역 통신 환경에서의 초광대역 방사 측정)

  • Lee, Joon-Yong;Kim, ChangKyeong;Ha, Dong-Woo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.11
    • /
    • pp.36-43
    • /
    • 2012
  • Ultra-wideband propagation measurement results for body area network scenarios are presented. We assumed several different scenarios for around-body and on-body propagations, and for each scenario, we conducted both time domain and frequency domain measurements in an anechoic chamber. For the around-body case, we investigated the effects of human body parts blocking line-of-sight, which could be accounted for by diffraction. On-body measurement results indicate a more complicated propagation mechanism exists in on-body propagation than in around-body propagation and antenna characteristics are affected.

WBAN을 위한 MAC 프로토콜 기술 동향 및 과제

  • Kim, Eun-Gyo;Son, Jin-Ho
    • Information and Communications Magazine
    • /
    • v.25 no.2
    • /
    • pp.26-31
    • /
    • 2008
  • WLAN, WPAN 기술에 이어 최근에는 인체영역에서의 의료용/비의료용 통신을 위한 무선 기술인 Wireless Body Network (WBAN)이 주목을 받고 있다. 이러한 추세에 따라 IEEE 802.15.6을 비롯한 여러 표준화 단체에서 인체영역의 무선 전송 기술 표준제정을 위해 활발한 활동을 벌이고 있다. 본 고에서는 이러한 인체영역 무선통신 기술의 표준화 동향과 MAC프로토콜 설계 시 고려해야 할 사항 및 적용 가능한 기법에 대해 살펴본다.

Efficient Extraction of efficient regions in ultrasound images (초음파 영상에서 효과적인 관심영역의 추출)

  • Kim, Tae-Sik;Kim, K-W
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.901-904
    • /
    • 2007
  • Nowadays, in many fields of medical treatment, we can make an observation and a diagnosis of inward disease without using a surgical operation. As one of them, ultra-sound diagnosis system can be available widely in its cost and size compared with other medical instruments. This system also make it possible for us to see the inner parts of the body in real time harmlessly for a long time. So it can be utilized to inspect the movement of heart or fetus and to diagnose an internal disease of the soft tissues. Ultra-sound images can be generated by the reflexive and scattered wave through the pulse generator and so in ultrasound images there exist inherently many affective noised signals. In this paper, we are to take an noise-restrained image and to extract a more affective regions of the images.

  • PDF

Transmission Latency-Aware MAC Protocol Design for Intra-Body Communications (인체 채널에서 전자기파 전송 지연 특성을 고려한 다중 매체 제어 프로토콜 설계)

  • Kim, Seungmin;Park, JongSung;Ko, JeongGil
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.8
    • /
    • pp.201-208
    • /
    • 2019
  • Intra-Body Communication (IBC) is a communication method using the human body as a communication medium. The fact that our human body consists of water and electrolyte allow such communication method could work and have strength in low-power. However, because the IBC directly affects to human body by using it as a medium, there was a lack of research in communication protocols of each communication layer. In this paper, we suggests MAC parameters which affects the performance of communication in human body channel, and propose new MAC protocol. Our results shows that our MAC is suitable for supporting high data rate applications with comparable radio duty cycle performance.

The Area Recognition for Iries Diagnosis with Edge Image Pattern Matching (에지영상 패턴매칭에 의한 홍채진단 영역인식)

  • 이승용;김윤호;류광렬
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.653-655
    • /
    • 2001
  • 본 논문은 홍채영상에 대한 에지를 검출하고 홍채진단을 위한 에지영상패턴 매칭을 이용하여 홍채의 진단영역을 인식하는 연구이다. 에지검출기법은 8방향 키어쉬-라프라시언 기법을 적용하고 진단영역인식은 진단기준패턴과 입력에지영상패턴과 오버레이 패턴매칭으로 진단영역을 인식하였다. 그 결과 적용한 에지검출영상의 PSNR이 131정도이며 패턴매칭 영역인식결과는 86%정도로 홍채에 의한 인체의 상태를 추정하는 자동진단시스템으로 환용 가능성을 제시하였다.

  • PDF

Efficient Human body tracking Using Similarity Of Histogram Of Intensity and Hue Local Area (국부 영역의 명도와 색상 히스토그램 유사도를 이용한 인체 추적)

  • Kwak, Nae-Joung;Song, Teuk-Seob
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.149-152
    • /
    • 2016
  • In this paper, we propose an algorithm to track human body of input video from a single camera. The proposed method gets the difference image between gray image of input image and one of background image and also the difference image between hue image of input image and one of background image. Then we combine the results, splits foreground and background and detect human body objects. Then each object is numbered and is tracked. The proposed method tracks each object using the intensity and hue histogram of local area in objects. The proposed method is applied to video from a camera and tracked well the hided objects and the overlapped objects.

  • PDF

A Practical Authentication System for Wireless Body Area Networks(WBAN) (무선 인체 영역 네트워크(WBAN)를 위한 실용적인 인증 시스템)

  • Ahn, Hae-Soon;Yoon, Eun-Jun;Bu, Ki-Dong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4C
    • /
    • pp.290-296
    • /
    • 2012
  • In this paper, we propose a practical authentication system based on Wireless Body Area Networks(WBAN) for U-healthcare medical information environments. The proposed authentication system is based on symmetric cryptosystem such as AES and is designed to not only provide security such as data secrecy, data authentication, data integrity, but also prevent replay attack by adopting timestamp technique and perform secure authentication between sensor node, master node, base-station, and medical server.

Analysis of Human Body Channel Based on Impulse Response Signals (임펄스 응답 신호를 이용한 인체 채널 분석)

  • Kang, Taewook;Lee, Jae-Jin;Oh, Wangrok
    • Journal of IKEEE
    • /
    • v.26 no.1
    • /
    • pp.36-42
    • /
    • 2022
  • This study presents an analysis of the human body channel as an electric signal path using body impulse response (BIR). The human body communications (HBC) has recently emerged as an effective signal transmission method to create wireless body area networks (WBAN). We provide body channel characteristics based on measured BIR in a proper experimental environment for the HBC using capacitive coupling with a customized channel sounding device, which can be applied as a guideline for the HBC system design. The frequency response of the BIR, extracted by a customized signal processing for the measure signals, shows the channel path loss (CPS) between 0 MHz and 100 MHz with an average CPS of approximately 46.8 dB. In addition, the relative noise power distributions can provide estimations on the signal to noise ratio at the HBC receiver in terms of capacitor and resistor values in the measured frequency band and the frequency band lower than 3 MHz considering the baseband signal detection.

A Study on Vital Signal Detection Using UWB Pulse (UWB 펄스를 이용한 인체 신호 검출 방법 연구)

  • Jang, Dong-Won;Choi, Jae-Ik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.465-468
    • /
    • 2014
  • In this paper, we describe a method capable of measuring biological signals including respiration, heart rate, blood pressure, and blood sugar, using UWB (Ultra Wide Band) pulses, while does not contact the human body. Physiological signal is a basic data for checking the health. Because life is longer and active area of human becomes very broad, the medical system and the physical human resources which are focused on existing hospital must be located close patient, In that way, they hope be to engage in healthy life by stepping a quick step and treatment. Thus, it must be fitted closely to the patient. It is necessary to monitor the health without inconvenience on an ongoing basis. How to utilize radio waves in this way have been studied for a long time. However, the characteristics of radio waves on the human body has not been accurately grasped and developed as such. Accordingly, it is a level that can not be applied clinically. So, it is not widely put to practical use. In this paper, We analyzed and described the impact and characteristics of UWB pulses to the human body is a problem existing.

  • PDF

Segmentation and Visualization of Human Anatomy using Medical Imagery (의료영상을 이용한 인체장기의 분할 및 시각화)

  • Lee, Joon-Ku;Kim, Yang-Mo;Kim, Do-Yeon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.1
    • /
    • pp.191-197
    • /
    • 2013
  • Conventional CT and MRI scans produce cross-section slices of body that are viewed sequentially by radiologists who must imagine or extrapolate from these views what the 3 dimensional anatomy should be. By using sophisticated algorithm and high performance computing, these cross-sections may be rendered as direct 3D representations of human anatomy. The 2D medical image analysis forced to use time-consuming, subjective, error-prone manual techniques, such as slice tracing and region painting, for extracting regions of interest. To overcome the drawbacks of 2D medical image analysis, combining with medical image processing, 3D visualization is essential for extracting anatomical structures and making measurements. We used the gray-level thresholding, region growing, contour following, deformable model to segment human organ and used the feature vectors from texture analysis to detect harmful cancer. We used the perspective projection and marching cube algorithm to render the surface from volumetric MR and CT image data. The 3D visualization of human anatomy and segmented human organ provides valuable benefits for radiation treatment planning, surgical planning, surgery simulation, image guided surgery and interventional imaging applications.