최근 딥러닝을 이용한 자동차 번호판 인식 알고리즘에 있어서 인조 번호판을 생성하여 데이터 수집과 라벨링 작업 시간을 줄이기 위한 연구가 진행되고 있다. 하지만 인조 번호판의 특성상 정면의 이미지로 구성되어 있기 때문에 자동차의 정면에서 촬영된 번호판의 인식률은 높지만 측면에서 촬영된 번호판의 경우 인식률이 낮아진다. 본 논문에서는 다양한 카메라 설치 위치에 따른 다각도로 촬영된 번호판 영상의 인식률을 보완하기 위해 이미지를 3차원으로 회전하여 데이터를 생성하는 인조 번호판 생성기 프로그램을 개발하였다. 3차원 회전을 하였을 때 번호판 인식 성능을 비교하기 위해 기존 방식으로 생성한 번호판과 제안 방식으로 생성한 번호판 각 600,000장씩 생성하여 총 1,200,000장을 생성하였으며, 데이터의 비율에 따라 10가지의 학습 데이터 셋을 구성하였다. 인조 번호판 데이터의 학습 결과를 평가하기 위해 실제 번호판 이미지 1789장으로 테스트 셋을 구성하였고, 기존의 인조 번호판 생성 방식과 인식 정확도를 비교 분석하였다.
최근 딥러닝을 이용하여 객체 인식 학습을 위한 데이터셋을 구축하는데 있어 시간과 인력을 단축하기 위해 인조 데이터를 생성하는 연구가 진행되고 있다. 하지만 실제 환경과 관계없이 임의의 배경에 배치되어 구축된 데이터셋으로 학습된 네트워크를 실제 환경으로 구성된 데이터셋으로 테스트할 경우 인식률이 저조하다. 이에 본 논문에서는 실제 배경 이미지에 객체 이미지를 합성하고, 다양성을 위해 3차원으로 회전하여 증강하는 인조 데이터셋 생성 시스템을 제안한다. 제안된 방법으로 구축된 인조 데이터셋으로 학습한 네트워크와 실제 데이터셋으로 학습된 네트워크의 인식률을 비교한 결과, 인조 데이터셋의 성능이 실제 데이터셋의 성능보다 2% 낮았지만, 인조 데이터셋을 구축하는 시간이 실제 데이터셋을 구축하는 시간보다 약 11배 빨라 시간적으로 효율적인 데이터셋 구축 시스템임을 증명하였다.
기계학습 분야에서 모델을 학습시키려면 많은 양의 데이터가 필요하다. 최근에는 컴퓨터 비전 분야에서 데이터가 적은 환경에서 모델을 학습하는 다양한 방법들이 소개되고 있다. 하지만 대부분의 방법을 사용하기 위해서는 어느 정도 최소한의 학습 데이터가 필요하기 때문에 극심하게 데이터가 부족한 환경에서는 사용하기 어렵다. 본 논문에서는 컴퓨터 비전 분야에서 기계학습을 사용할 때 극심하게 데이터가 부족한 환경에서 시뮬레이션 도구를 활용한 인조 데이터 생성 방법을 제안한다. 실험 결과를 통해 시뮬레이션 도구를 활용하여 생성한 인조 데이터로 학습한 모델이 실제 데이터만을 학습한 모델을 대체할 수 있음을 확인하였고, F-1 점수와 정확도가 향상함을 실험적으로 확인하였다.
객체 검출 및 인식 과정은 컴퓨터비전 분야에서 매우 중요한 과업으로써, 관련 연구가 활발하게 진행되고 있다. 그러나 실제 객체 인식 과정에서는 학습된 이미지 데이터와 테스트 이미지 데이터간 해상도 차이로 인하여 인식기의 정확도 성능이 저하되는 문제가 종종 발생한다. 이를 해결하기 위해 본 논문에서는 객체 인식 정확도 향상을 위한 이미지 초해상도 기법을 제안하여 객체 인식 및 초해상도 통합 프레임워크를 설계하고 개발하였다. 세부적으로는 11,231장의 차량 번호판 훈련용 이미지를 웹 크롤링, 인조데이터 생성 등을 통해 자체적으로 구축하고, 이를 활용하여 이미지 좌우 반전에 강인하도록 목적함수를 정의하여 이미지 초해상도 인공 신경망을 훈련시켰다. 제안 방법의 성능을 검증하기 위해 훈련된 이미지 초해상도 및 번호 인식기 1,999장의 테스트 이미지에 실험하였고, 이를 통해 제안한 초해상도 기법이 문자 인식 정확도 개선 효과가 있음을 확인하였다.
최근 객체 인식에 높은 성능을 가진 딥러닝 네트워크가 나오고 있다. 딥러닝을 이용한 객체 인식의 경우 성능 향상을 위해 학습 데이터 셋 구축이 중요하다. 데이터 셋을 구축하기 위해서는 이미지를 수집하고 라벨링 해야 한다. 이 과정은 많은 시간과 인력이 필요하다. 때문에 오픈 데이터 셋을 사용한다. 그러나 방대한 오픈 데이터 셋을 가지고 있지 않는 객체도 존재한다. 그 중 하나가 번호판 검출과 인식에 필요한 데이터이다. 이에 본 논문에서는 이미지를 최소화 하여 대용량 데이터 셋을 만들 수 있는 인조 번호판 생성기 시스템을 제안한다. 또한 인조 번호판 배치구조에 따른 검출률을 분석했다. 분석결과 가장 좋은 배치구조는 FVC_III, B이며 가장 적합한 네트워크는 D2Det이었다. 인조 데이터셋 성능은 실제 데이터셋의 성능보다 2~3%가 낮았지만, 인조 데이터를 구축하는 시간이 실제 데이터셋을 구축하는 시간보다 약 11배 빨라 시간적으로 효율적인 데이터 셋 구축 시스템임을 증명하였다.
자동차 번호인식을 위해선 수많은 번호판 데이터가 필요하다. 번호판 데이터는 과거의 번호판부터 최신의 번호판까지 균형 있는 데이터의 확보가 필요하다. 하지만 실제 과거의 번호판부터 최신의 번호판의 데이터를 획득하는데 어려움이 있다. 이러한 문제를 해결하기 위해 인조 번호판을 이용하여 자동차 번호판을 생성하여 딥러닝을 통한 번호판 인식 연구가 진행되고 있다. 하지만 인조 데이터는 실제 데이터와 차이가 존재하며, 이러한 문제를 해결하기 위해 다양한 데이터 증강 기법을 사용한다. 기존 데이터 증강 방식은 단순히 밝기, 회전, 어파인 변환, 블러, 노이즈등의 방법을 사용하였다. 본 논문에서는 데이터 증강 방법으로 인조데이터를 실제 데이터 스타일로 변환하는 스타일 변환 방법을 적용한다. 또한 실제 번호판 데이터는 원거리가 많고 어두운 경우 잡음이 많이 존재한다. 단순히 입력데이터를 가지고 문자를 인식할 경우 오인식의 가능성이 높다. 이러한 경우 문자인식 향상을 위해 본 논문에서는 문자인식을 위하여 화질개선 방법으로 DeblurGANv2 방법을 적용하여 번호판 인식 정확도를 높였다. 번호판 검출 및 번호판 번호인식을 위한 딥러닝의 방식은 YOLO-V5를 사용하였다. 인조 번호판 데이터 성능을 판단하기 위해 자체적으로 확보한 자동차 번호판을 수집하여 테스트 셋을 구성하였다. 스타일 변환을 적용하지 않은 번호판 검출이 0.614mAP를 기록하였다. 스타일 변환을 적용한 결과 번호판 검출 성능이 0.679mAP 기록하여 성능이 향상되었음을 확인하였다. 또한 번호판 문자인식에는 화질 개선을 하지 않은 검출 성공률은 0.872를 기록하였으며, 화질 개선 후 검출 성능이 0.915를 기록하여 성능 향상이 되었음을 확인 하였다.
지문의 방향 정보는 융선 강화, 정합, 분류기 등과 같이 전반적인 지문 인식 알고리즘의 기반 정보로 사용하므로 방향 정보의 오차는 지문 인식 성능에 직접적인 영향을 준다. 지문의 방향은 대부분의 영역에서는 융선의 흐름이 완만하게 변하는 전역적인 특성과 중심점(core point)이나 삼각주(delta point)와 같은 특이점(singular point) 부근에서 융선의 흐름이 급격히 변하는 지역적인 특성을 모두 갖고 있다. 따라서 융선의 방향 추출 시에 지역적인 특성만 강조하면 특이점 부근에서의 방향 변화를 민감하게 표현해 줄 수 있지만 노이즈에 취약한 단점이 발생하고 전역적인 특성만 강조하면 노이즈에 강인한 특성을 보이지만 특이점 부근에서 방향 변화에 둔감해진다. 본 논문에서는 지역적인 특성에 민감하면서도 노이즈에 강인한 적응적 지문 방향 추출 방법에 대하여 제안하였다. 또한, 상처에 의해 발생되는 방향성 노이즈는 반복 회귀 진단으로 이상치(outlier)들을 선별하여 제거함으로써 이에 대한 영향을 최소화하였다. 그리고 영역별로 측정 사이즈를 다르게 하여 노이즈에 강인하면서 특이점 부근에서는 융선 변화에 민감하게 방향을 추정하였다. 제안 방법의 평가를 위해 인조 지문(synthetic fingerprint)과 지문 인식의 성능 평가용으로 많이 사용되는 FVC 2002 데이터베이스를 사용하였다. 융선 방향 추출의 정확성은 융선의 방향 값을 사전에 알고 있는 인조 지문 데이터를 생성하여 평가하였고 최종 지문 인식 성능의 평가는 FVC 2002 데이터베이스를 사용하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.