• Title/Summary/Keyword: 인적요인사고분류체계

Search Result 8, Processing Time 0.024 seconds

Classification and Analysis of Human Error Accidents of Helicopter Pilots in Korea (국내 헬리콥터 조종사 인적오류 사고 분류 및 분석)

  • Yu, TaeJung;Kwon, YoungGuk;Song, Byeong-Heum
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.28 no.4
    • /
    • pp.21-31
    • /
    • 2020
  • There are two to three helicopter accidents every year in Korea, representing 5.7 deaths per 100,000 flights. In this study, an analysis was conducted on helicopter accidents that occurred in Korea from 2005 to 2017. The accident analysis was based on the aircraft accident and incident report published by the Aircraft and Railway Accident Investigation Board. This Research analyzed the characteristics of accidents occurring in Korea caused by human error by pilots. Accident analysis was done by classifying the organization, flight mission, aircraft class, flight stage, accident cause, etc. Pilot's huan error was classified as Skill-based error, decision error and perceptual error in accordance with the HFACS taxonomy. The accidents caused by pilot's human error were classified into five categories: powerlines collision, loss of control, fuel exhaustion, unstable approach to reservoir, and elimination of tail rotor.

A Study on Analysis of Accident Rate and the Latent Condition of Accident for Helicopters in Korea (국내 회전익 항공기 사고율 분석 및 사고의 잠재적 조건에 관한 연구)

  • Yu, Tae-Jung;Kim, Chil-Young;Lim, Se-Hoon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.22 no.4
    • /
    • pp.56-64
    • /
    • 2014
  • There were a total of 65 accidents of helicopers between 1990 and 2013. The overall accidents rate has remained around 8 accidents per 100,000 flight hours, and the fatal rate has stayed at about 8 accidents per 100,000 flight hours. In this study, we conduct a series of statistical analyses to investigate the significance of latent failure of groups that operate the helicopter. Analysis of variance demonstrated significant differences in the latent condition score for the 3 groups, with the lower accidents rate groups reporting better scores of latent condition. Results indicated that there are the significant differences of latent condition in accidents between groups of high accidents rate and groups of low accidents rate.

The Effect of Organizational Influence on Precondition for Unsafe Acts in Pilots - Focused on HFACS - (조직영향이 조종사들의 불안전행위의 전제조건에 미치는 영향 - HFACS를 중심으로)

  • Yu, TaeJung;Song, Byeong-Heum
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.4
    • /
    • pp.161-169
    • /
    • 2017
  • The Human Factors Analysis and Classification System (HFACS) is a general human error framework originally developed and tested within the U.S. military as a tool for investigating and analyzing the human causes of aviation accidents. Based upon Reason's (1990) model of latent and active failures, HFACS addresses human error at all levels of the system, including the condition of aircrew and organizational factors. As a result, this study aims to examine the influence between the latent conditions based on HFACS. This study seeks to verify the factors of "Organizational Influence" effecting the "Precondition for Unsafe Acts" of HFACS. The results of empirical analysis demonstrated that the organizational influence had a positive influence on precondition for unsafe act, especially the "Organizational Climate" of organizational influence had even greater influence on precondition for unsafe acts.

Characteristics Analysis of Accident Factors of UK Civil Unmanned Aircraft Using SHELL Model and HFACS (SHELL 모델과 HFACS를 활용한 영국 민간 무인 항공기 사고 요인 특징 분석)

  • Do Yun Kim;Jo Won Chang
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.32 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • The unmanned aerial vehicle industry has developed a lot, but the possibility of accidents is increasing due to potential risks. In this study, SHELL models and HFACS were used to analyze unmanned aerial vehicle accidents in the UK and to identify the main causes and characteristics of accidents. The main cause analyzed by the SHELL model was identified as an abnormality in the alarm system. The main cause of the accident analyzed by HFACS was identified as the technical environment. The common cause identified by the SHELL model and HFACS was identified as a mechanical problem of unmanned aerial vehicles. This is due to the lack of accurate information or functionality of the alarm system in the operator interface, which often prevents the operator from responding to sensitive information. Therefore, in order to prevent civil UAV accidents, the stability and reliability of the system must be secured through regular inspections of the UAV system and continuous software updates. In addition, an ergonomic approach considering human interfaces is needed when developing technologies.

Assessing Risks and Categorizing Root Causes of Demolition Construction using the QFD-FMEA Approach (QFD-FMEA를 이용한 해체공사의 위험평가와 근본원인의 분류 방법)

  • Yoo, Donguk;Lim, Nam-Gi;Chun, Jae-Youl;Cho, Jaeho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.4
    • /
    • pp.417-428
    • /
    • 2023
  • The demolition of domestic infrastructures mirrors other significant construction initiatives in presenting a markedly high accident rate. A comprehensive investigation into the origins of such accidents is crucial for the prevention of future incidents. Upon detailed inspection, the causes of demolition construction accidents are multifarious, encompassing unsafe worker behavior, hazardous conditions, psychological and physical states, and site management deficiencies. While statistics relating to demolition construction accidents are consistently collated and reported, there exists an exigent need for a more foundational cause categorization system based on accident type. Drawing from Heinrich's Domino Theory, this study classifies the origins of accidents(unsafe behavior, unsafe conditions) and human errors(human factors) as per the type of accidents experienced during demolition construction. In this study, a three-step model of QFD-FMEA(Quality Function Deployment - Failure Mode Effect Analysis) is employed to systematically categorize accident causes according to the types of accidents that occur during demolition construction. The QFD-FMEA method offers a technique for cause classification at each stage of the demolition process, including direct causes(unsafe behavior, unsafe environment), and human errors(human factors) through a tri-stage process. The results of this accident cause classification can serve as safety knowledge and reference checklists for accident prevention efforts.

Human Factors Aircraft Cockpit Design and Flying Qualities (인간공학적 조종실 설계가 항공기 비행 품질에 미치는 영향)

  • 오제상
    • Proceedings of the ESK Conference
    • /
    • 1992.10a
    • /
    • pp.26-32
    • /
    • 1992
  • 세계적으로 항공기 사고의 통계적 분석에 의하면 항공기 운용자의 인적과실(Human error)로 인한 항공기 사고가 약 70% 이상으로 보고되고 있다. 항공기 운용자의 인적과실에 기인한 요인들 중에서 운용자의 작업량, 작업공간, 작업환경, 인체크기, 인체 생리, 인간 심리 및 습관 등을 항공기 설계단계에서 고려하지 못한 요인이 대부분이다. 일반적으로 항공기 비행품질(Flying qualities)의 영향을 주는 설계분야는 크게 세가지로 항공기 형상(Configuration), 조종체계(Control system)및 조종실 배치(Cockpit layout)로 분류된다. 이들 세가지 설계분야 중에서 조종실의 운용자 인간공학적인 요구 사항을 고려하지 않으면 항공기 운용성 품질중에서 삼분의 일이 감소될 수 있다. 그리고 항공기 개발시에 전담하는 항공기 설계 분야별로 구분하고 그 전담설계 부서들과 인간공학적 조종실 설계 전담 부서가 항공기 비행 품질 및 운용자 인적과실(Human error)에 미치는 영향을 분석하고 인간공학의 중요성을 강조한다. 항공기를 개발할때에 개발자는 그 항공기를 운용하는 운용자의 인체, 생리, 심리, 습관 등을 고려 하여 항공기 조종실의 인간공학적 최적화 설계 및 배치 (Design and layout)를 개발초기단계부터 항공기를 설계할때에, 그 항공기의 조종실 품질은 조종사가 항공기 비행 임무를 수행할때에 항공기 비행을 위한 용이한 정보 인식(Sencing), 용이한 정보 결심(Deciding) 및 용이한 조종(Manipulating)의 특성을 조종사에게 제공할 때 항공기 비행 품질이 좋아질 것이다.

  • PDF

A Study on the Fatigue Analysis by the Boarding Period on Training Ship (실습선 승선기간에 의한 승선 집단별 피로도 분석에 관한 연구)

  • Kim, Seungyeon;Park, Youjin;Lee, Yunsok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.2
    • /
    • pp.160-166
    • /
    • 2016
  • Crew fatigue has been recognized as a major cause of maritime accidents. Systematic study on crew fatigue has a direct impact on the human factor, but the various measures being taken to prevent human error account for most of the causes of marine accidents situation are still insufficient. In this study, 128 people who have a variety of career and job types boarded the T/S Hanbada were analyzed the changes of fatigue during the 87-days a Maritime Silk Road Sailing Expedition. Crew fatigue was measured by period of time onboard classified as mental, physiological and physical changes through survey responses and individual interviews of nurses. Also, it was identified the fatigue factor through quantitative statistical analysis. As a result of repeated measures analysis of variance for the changes of fatigue in position and gender criteria in accordance with boarded period, the position-specific analysis was that Professor Rating group has appeared to feel more mental and physical fatigue than the student population. Also, the results of fatigability about the sex-specific analysis have been found that women feel more physical fatigue than men.

A Study on Major Safety Problems and Improvement Measures of Personal Mobility (개인형 이동장치의 안전 주요 문제점 및 개선방안 연구)

  • Kang, Seung Shik;Kang, Seong Kyung
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.1
    • /
    • pp.202-217
    • /
    • 2022
  • Purpose: The recent increased use of Personal Mobility (PM) has been accompanied by a rise in the annual number of accidents. Accordingly, the safety requirements for PM use are being strengthened, but the laws/systems, infrastructure, and management systems remain insufficient for fostering a safe environment. Therefore, this study comprehensively searches the main problems and improvement methods through a review of previous studies that are related to PM. Then the priorities according to the importance of the improvement methods are presented through the Delphi survey. Method: The research method is mainly composed of a literature study and an expert survey (Delphi survey). Prior research and improvement cases (local governments, government departments, companies, etc.) are reviewed to derive problems and improvements, and a problem/improvement classification table is created based on keywords. Based on the classification contents, an expert survey is conducted to derive a priority improvement plan. Result: The PM-related problems were in 'non-compliance with traffic laws, lack of knowledge, inexperienced operation, and lack of safety awareness' in relation to human factors, and 'device characteristics, road-drivable space, road facilities, parking facilities' in relation to physical factors. 'Management/supervision, product management, user management, education/training' as administrative factors and legal factors are divided into 'absence/sufficiency of law, confusion/duplication, reduced effectiveness'. Improvement tasks related to this include 'PM education/public relations, parking/return, road improvement, PM registration/management, insurance, safety standards, traffic standards, PM device safety, PM supplementary facilities, enforcement/management, dedicated organization, service providers, management system, and related laws/institutional improvement', and 42 detailed tasks are derived for these 14 core tasks. The results for the importance evaluation of detailed tasks show that the tasks with a high overall average for the evaluation items of cost, time, effect, urgency, and feasibility were 'strengthening crackdown/instruction activities, education publicity/campaign, truancy PM management, and clarification of traffic rules'. Conclusion: The PM market is experiencing gradual growth based on shared services and a safe environment for PM use must be ensured along with industrial revitalization. In this respect, this study seeks out the major problems and improvement plans related to PM from a comprehensive point of view and prioritizes the necessary improvement measures. Therefore, it can serve as a basis of data for future policy establishment. In the future, in-depth data supplementation will be required for each key improvement area for practical policy application.