• Title/Summary/Keyword: 인장전단부착실험

Search Result 46, Processing Time 0.02 seconds

Nonlinear FE Analysis of RC Shear Walls (철근콘크리트 전단벽의 비선형 유한요소해석)

  • 곽효경;김도연
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.3
    • /
    • pp.293-308
    • /
    • 1999
  • 이 논문에서는 패널, 깊은 보 그리고 전단벽과 같이 평면응력상태하에 있는 철근콘크리트 구조물의 비선형 유한요소해석에 있어서의 직교이방성 콘크리트 구성 모델의 적용성을 보여준다. 등가의 일축 변형을 개념을 토대로 콘크리트의 구성 관계가 주변형률 축과 일치하고 하중이력에 따라 회전하는 직교하는 축에 대해 제시된다. 제안된 모델은 이축 압축응력상태와 인장-압축 응력상태에서 각각 압축강도의 증가와 인장 저항력의 감소효과를 보여주는 이축 파괴영역의 정의를 포함한다. 인장균열이 발생한 후, 콘크리트의 압축강도의 감소효과가 제시되고, 인장강화효과로 알려진 철근에 의해 지지되는 콘크리트의 인장응력이 고려된다. 평균응력과 평균변형률 개념을 사용하여 힘의 평형, 적합조건 그리고 철근과 철근을 둘러싼 콘크리트 사이의 부착응력-슬림 관계를 토대로 인장강화효과를 모사하기 위한 모델이 제안된다. 유한요소 모델에 의한 예측은 유용한 실험자료와의 비교에 의해 입증된다. 이 논문에서는 해석결과와 이상화한 전단 패널실험으로부터 얻어진 실험값의 비교연구가 수행되고, 제안된 모델의 타당성을 보여주기 위해 서로 다른 응력상태하의 전단 패널 보와 벽체의 힘-변위 관계를 평가하였다.

  • PDF

Effect of Shear Key and Edge Length of Near Surface-Mounted FRP Plate in Concrete (콘크리트에 표면매입 보강된 FRP판의 전단키 및 연단거리 효과)

  • Seo, Soo-Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.1
    • /
    • pp.41-47
    • /
    • 2016
  • This paper presents a bond test to find the effect of shear key and edge length from the bonded FRP in near surface-mounted(NSM) retrofit using FRP plate. Main parameters in the test are the location and size of shear key and the edge length. For the test, 10 specimens were made by embedding FRP plate of $3.6mm{\times}16mm$ into $400mm{\times}200(300)mm{\times}400mm$ concrete block and fixing it by using epoxy. Tensile load was applied to the FRP of the specimens until failure and was recorded at each load increase. In addition, the bond slip and elongation of FRP were measured during the test. From the test, it was found that the further the shear key located from the loading, the higher strength we could get. The bond strength inversely depended on the size of shear key. Especially, when the size of shear key was to be lagger than certain size, the bond strength decreased to very low value; even less than that of the case without shear key. The bond strength somewhat increased corresponding to the increase of edge length from the bonded end of FRP to loading in spite of same bond length. The bond-slip between FRP and concrete governed overall deformation in the bond test of NSM FRP so that the effect of excessive slip is necessary to be considered in the design.

Experimental Study on Bond Strength between Carbon Fiber Sheet and Concrete (탄소섬유쉬트와 콘크리트의 부착강도 실험연구)

  • 유영찬;최기선;최근도;이한승;김긍환
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.168-174
    • /
    • 2001
  • Carbon fiber sheet(CFS) has been widely used for strengthening of the concrete building structures due to its excellent physical properties such as high strength, light weight and high durability. Bond strength or behavior, on the other hands, between carbon fiber sheet and concrete is very important in strengthening the concrete member using CFS. Therefore the bond failure mechanism between CFS and concrete should be fully verified and understood. This study is to investigate the bond strength of CFS to the concrete by the direct pull-out test and the tensile-shear test. In the direct pull-out tests, the bond strength under the various environmental conditions such as curing temperature, surface condition on concrete and water content of concrete are evaluated. Also, the effective bond length, lu and the average bond stress, $\tau$y are examined in the tensile-shear tests. Based on the test results, it is concluded that the curing temperature is the most critical element for the bond strength between CFS and concrete. And, the proper value of lu and $\tau$y is recommended with 15 cm and 9.78∼ 11.88 kgf/$\textrm{cm}^2$ respectively.

Effect of Bond Action of Longitudinal Bars on Shear Transfer Mechanism in RC Beams (RC 보에서의 전단저항기구와 주철근의 부착 작용과의 관계)

  • Kim Kil-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.513-520
    • /
    • 2005
  • The uniform truss mechanism is widely accepted as a shear transfer mechanism in reinforced concrete members. However, the uniform truss action cannot be expected when the bond stress distribution is not constant along longitudinal bars. A test method in which only the truss action takes place is developed and conducted to investigate the truss actions under various bond contributions. Based on the experimental results and analysis, the following findings can be obtained: 1) The bond stress distribution depends on the axial compression force, the amount of shear reinforcement and loading conditions. 2) The analysis using the combined truss model consisting of uniform and fan-shape trusses can predict the experimental results

An Experimental Study on Flexural Behavior of RC Beams Strengthened with Hi-Strength Bars(3) (고장력 인장봉으로 보강된 RC 보의 휨 거동에 관한 실험적 연구(3))

  • Shin, Kyung-Jae;Kim, Yoon-Jung;Moon, Jeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.351-358
    • /
    • 2007
  • Unlike external bonded steel plate or carbon fiber, the external unbonded strengthening using hi-strength bar has some advantages in speed and simplicity of installation. It is not required surface preparations and not affected by environmental conditions. A set of nine laboratory tests on RC beams strengthened using the hi-tension bars are reported. Anchoring pin developed in former research is installed at the end of beam to connect the hish-tension bar to RC beam. The test results strengthened by hi-tension bars are compared with those of non-strengthened specimens. The main test parameters are the cross-sectional area of the high-tension bar, distance of stirrups and condition of supports. Test results show that the beams reinforced are superior to reference specimens, especially for the strength and deformation capacity. Also, shear resisting effect of hi-strength bar can be confirmed in the specimens which have lack of stirrups.

An Experimental Study on Shear Behavior of Internal Reinforced Concrete Beam-Column Assembly (철근콘크리트 보-기둥 내부 접합부의 전단 거동에 관한 실험적 연구)

  • Lee, Jung-Yoon;Kim, Jin-Young;Oh, Ki-Jong
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.441-448
    • /
    • 2007
  • The beam-column assembly in a ductile reinforced concrete (RC) frames subjected to seismic loading are generally controlled by shear and bond mechanisms, both of which exhibit poor hysteretic properties. Hence the response of joints is restricted essentially to the elastic domain. The usual earthquake resistant design philosophy of ductile frame buildings allows the beams to form plastic hinges adjacent to beam-column assembly. Increased strain in these plastic hinge regions affect on joint strain to be increased. Thus bond and shear joint strength are decreased. The research reported in this paper presents the test results of five RC beam-column assembly after developing plastic hinges in beams. Main parameter of the test Joints was the amount of the longitudinal tensile reinforcement of the beams. Test results indicted that the ductile capacity of joints increased as the longitudinal tensile reinforcement of the beams decreased. In addition, both the tensile strain of the longitudinal reinforcement bars in the joint and the ductile ratio of the beam-column assemblages increased due to the yielding of steel bars in the plastic hinge regions.

Shear Friction Strength based on Limit Analysis for Ultra-High Performance Fiber Reinforced Concrete (소성 이론에 의한 강섬유 보강 초고성능콘크리트의 전단 마찰 강도식 제안)

  • Lee, Ji-Hyung;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.299-309
    • /
    • 2015
  • Ultra High Performance Fiber Reinforced Concrete (UHPFRC) is distinguished from the normal concrete by outstanding compressive and tensile strength. Cracked normal concrete resists shear by aggregate interlocking while clamped by transverse reinforcement, which is called as shear friction theory. Cracked UHPFRC is expected to have a different shear transfer mechanism due to rather smooth crack face and post-cracking behavior under tensile force. Twenty-four push-off specimens with transverse reinforcement are tested for four different fiber volume ratio and three different ratio of reinforcement along the shear plane. The shear friction strength for monolithic concrete are suggested by limit analysis of plasticity and verified by test results. Plastic analysis gives a conservative, but reasonable estimate. The suggested shear friction factor and effectiveness factor of UHPFRC can be applied for interface shear transfer design of high-strength concrete and fiber reinforced concrete with post-cracking tensile strength.

A Study on Bond Properties of Joint Grouting Materials for Precast Concrete Bridge Decks (프리캐스트 콘크리트 교량바닥판 이음부 채움재의 부착특성연구)

  • 김영진;정철헌;심창수
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.1
    • /
    • pp.153-159
    • /
    • 1998
  • 최근 교통량의 증가에 의해 직접 하중을 부담하는 교량바닥판의 손상이 심각한문제로 부각되고 있다. 더욱이 차량하중의 증가는 바닥판손상을 더욱 가속화시키고 있는 실정이다. 바닥판의 손상이 심한 경우에는 교체 또는 성능개선공사를 시행하게 되는데, 이때 기존의 현장타설바닥판이 갖는 단점을 보완할 수 있는 프리캐스트 콘크리트 바닥판은 공기단축, 품질확보 등의 측면에서 매우 효과적인 대체공법이 될 수 있다. 프리캐스트 콘크리트 바닥판은 기존의 현장타설바닥판과달리 바닥판간에 이음부를 갖는 구조적 특징이 있으며, 다양한응력상태에 있는 바닥판중에 존재하는 비연속부인 이음부와 콘크리트 부재사이의 원활한 하중전달을 위해 부착강도는 매우 중요하다. 따라서 본 연구에서는 이음부의 부착강도를 함리적으로 평가할 수 있는 새로운 실험방법을 제안하고 이를 이용하여 휨, 직접인장 및 전단실험을 수행하였다. 또한 구성재료에 대한 압축, 휨인장 및 할렬인장강도 특성도 평가하였 다. 부착 및 강도특성에 관한 실험결과, 제안된 실험방법을 이용하면 실제에 근접한 부착강도를 평가할 수 있으며 국내에서 사용되는 충전재료중 무수축모르터가 프리캐스트 콘크리트 바닥판간 이음부의 채움재로서의 기본요건을 만족하고 있는 것을 알 수 있었다.

Shear Strength Estimation Model for Reinforced Concrete Members (철근콘크리트 부재의 전단강도 산정모델)

  • Lee, Deuckhang;Han, Sun-Jin;Kim, Kang Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.1-8
    • /
    • 2020
  • This study presents a shear strength estimation model, in which the shear failure of a reinforced concrete (RC) member is assumed to be governed by the flexure-shear mechanism. Two shear demand curves and corresponding potential capacity curves for cracked tension and uncracked compression zones are derived, for which the bond mechanism developed between reinforcing bars and surrounding concrete is considered in flexural analysis. The shear crack concentration factor is also addressed to consider the so-called size effect induced in large RC members. In addition,unlike exising methods, a new formulation was addressed to consider the interaction between the shear contributions of concrete and stirrup. To verify the proposed method, an extensive shear database was established, and it appeared that the proposed method can capture the shear strengths of the collected test specimens regardless of their material properties, geometrical features, presence of stirrups, and bond characteristics.

An Experimental Study to Prevent Debonding Failure of RC Beams Strengthened with GFRP Sheets (유리섬유시트로 휨보강된 RC보의 부착파괴 방지 상세에 관한 실험적 연구)

  • You, Young-Chan;Choi, Ki-Sun;Kim, Keung-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.677-684
    • /
    • 2007
  • This study investigates the failure mechanism of RC beams strengthened with GFRP (glass fiber reinforced polymer) sheets. After analyzing failure mechanisms, the various methods to prevent the debonding failures, such as increasing bonded length of GFRP sheets, U-shape wrappings and epoxy shear keys are examined. The bonded length of GFRP sheets are calculated based on the assumed bond strengths of epoxy resin. The U-shape wrappings are either adopted at the end or center of the CFRP sheets bonded to the beam soft. The epoxy shear keys are embedded to the beam soft to provide sufficient bond strength. The end U-wrappings and the center U-wrappings are conventional, while epoxy shear keys are new details developed in this study. A total six half-scale RC beams have been constructed and tested to investigate the effectiveness of each methods to prevent debonding failure of GFRP sheets. From the experimental results, it was found that increasing bonded length or end U-wrappings do not prevent debonding failure. On the other hand, the beams with center U-wrappings and shear keys reached an ultimate state with their sufficient performance. The center U-wrappings tended to control debonding of the longitudinal GFRP sheets because the growth of the longitudinal cracks along the edges of the composites was delayed. In the case of shear keys, it was sufficient to prevent debonding and the beam was failed by GFRP sheets rupture.