• Title/Summary/Keyword: 인장시험시편

Search Result 278, Processing Time 0.025 seconds

A Study on Tensile Properties of CFRP Composites under Cryogenic Environment (극저온 환경에서 탄소섬유강화 복합재의 인장 물성에 관한 연구)

  • Kim Myung-Gon;Kang Sang-Guk;Kim Chun-Gon;Kong Cheol-Won
    • Composites Research
    • /
    • v.17 no.6
    • /
    • pp.52-57
    • /
    • 2004
  • In this study, mechanical tensile properties of carbon fiber reinforced polymeric (CFRP) composite cycled with thermo-mechanical loading under cryogenic temperature (CT) were measured using cryogenic environmental chamber. Thermo-mechanical tensile cyclic loading (up to 10 times) was applied to graphite/epoxy unidirectional laminate composites far room temperature (RT) to $-50^{\circ}C$, RT to $-100^{\circ}C$ and RT to $-150^{\circ}C$. Results showed that tensile stiffness obviously increased as temperature decreased while the thermo-mechanical cycling has little influence on it. Tensile strength, however, decreased as temperature down to CT while the reduction of strength showed little after CT-cycling. For the analysis of the test results, coefficient of thermal expansion (CTE) of laminate composite specimen at both RT and CT were measured and the interface between fiber and matrix was observed using SEM images.

발전 설비의 가동 중 신뢰성 평가를 위한 연속압입시험법의 활용

  • Song, Won-Seok;Gang, Seung-Gyun;Kim, Yeong-Cheon;Kwon, Dong-Il
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2011.06a
    • /
    • pp.125-130
    • /
    • 2011
  • 발전 설비는 기대 수명동안의 안정성을 확보하기 위하여 해당 규격에 부합하도록 설계하여 건설된다. 하지만 가동 중 다양한 복합 환경에 노출됨에 따라 구조물을 이루고 있는 재료의 열화 현상이 가속화되어 예기치 못한 파손이 발생할 수 있다. 기계적 물성은 재료의 기계적 거동을 나타내는 주요 척도가 되며 이는 신뢰성 및 안전과 직결된다. 하지만 기존의 역학물성을 측정하는 대부분의 시험법들은 특정 크기의 시편을 요구하고 파괴적인 시험법이기 때문에 가동 중 시설물에 적용하기가 불가능하였다. 이러한 한계점을 극복하고자 비파괴적이고 정량적인 시험이 가능한 연속압입시험법이 최근 각광받는 시험법으로서 많은 연구자들에 의해 연구되고 있다. 이 시험법은 시험 대상물의 형상에 제약을 받지 않으며 시험 절차가 매우 간단하다는 장점을 가진다. 또한 대상의 국소 부위에 시험할 수 있어 취약 부위 판별이 가능하다. 본 연구에서는 대표응력-대표변형률 기법을 통하여 인장물성을 평가하고, 압입 하중 차이를 이용하여 소재에 존재하는 잔류응력을 평가하는 기법을 소개한다. 또한, 연속압입시험을 이용하여 실제 발전소 파이프의 취약부위로 알려진 용접부에 대하여 인장물성 및 잔류응력을 측정함으로써 실제 산업체의 신뢰성 평가가 적용할 수 있음을 확인하였다.

  • PDF

Design of Injection Mold with Cavity Pressure/Temperature Sensors and Molding for Standard Tensile Test Specimen (내압력.온도센서를 갖는 표준 인장시편용 사출금형설계 및 성형)

  • Lee D.M.;Han B.K.;Lee O.S.;Lee Sung-Hee
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1416-1419
    • /
    • 2005
  • Design and manufacturing of plastic injection mold with cavity pressure/temperature sensors were performed in the present study for tensile test specimen. Standards of mold-base and tensile test specimen were used to design an injection molding system. Cavity pressure and temperature sensors were placed on the side of fixed platen of injection mold machine to prevent them from external impact damage. Injection molding experiments with variations of injection speed and melt temperature were performed and polycarbonate tensile specimens were prepared for the tensile test. It was shown that injection molding processing parameters can have effect on the mechanical properties of the plastic injection molded part.

  • PDF

Injection Mold with Cavity Pressure/Temperature Sensors for Standard Tensile Test Specimen (내압력.온도센서를 갖는 표준 인장시편용 사출금형)

  • Lee, Do-Myoung;Han, Byoung-Kee;Lee, Sung-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.11
    • /
    • pp.84-90
    • /
    • 2007
  • In this study, design and manufacturing of plastic injection mold with cavity pressure/temperature sensors were performed fur tensile test specimen. International standard system for plastic tensile specimen was applied to design an injection molding system. Cavity pressure and temperature sensors were placed on the side of fixed platen of the injection mold to prevent them from external impact damage. Injection molding experiments with variations of injection speed and melt temperature were performed and then tensile test of the manufactured polycarbonate specimens was also performed. It was shown that injection molding processing parameters can have effect on the mechanical properties of the plastic injection molded part.

Linear Structural Analysis of Standard Plastic Tensile Specimen with Residual Stress Induced by Injection Molding (사출성형과정의 잔류응력을 고려한 표준인장시편의 선형구조해석)

  • Lee D.M.;Han B.K.;Lee Sung-Hee
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.579-580
    • /
    • 2006
  • In this study, an injection mold of tensile test specimen was manufactured by international standard. Pressure and temperature in the cavity of the injection mold was measured by sensors. Simulation of injection molding process was performed with the same condition of experiment and linear structural tensile analysis was also performed with the initial condition of the residual stress induced by injection molding analysis. Normalized elastic coefficient of tensile test was compared with that of structural analysis. It was shown that the residual stress induced by injection molding has an effect on both the experiment of tensile test and linear structural analysis.

  • PDF

Micro-mechanical Failure Prediction and Verification for Fiber Reinforced Composite Materials by Multi-scale Modeling Method (멀티스케일 모델링 기법을 이용한 섬유강화 복합재료의 미시역학적 파손예측 및 검증)

  • Kim, Myung-Jun;Park, Sung-Ho;Park, Jung-Sun;Lee, Woo-Il;Kim, Min-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.1
    • /
    • pp.17-24
    • /
    • 2013
  • In this paper, a micro-mechanical failure prediction program is developed based on SIFT (Strain Invariant Failure Theory) by using the multi-scale modeling method for fiber-reinforced composite materials. And the failure analysis are performed for open-hole composite laminate specimen in order to verify the developed program. First of all, the critical strain invariants are obtained through the tensile tests for three types of specimens. Also, the matrices of strain amplification factors are determined through the finite element analysis for micro-mechanical model, RVE (Representative Volume Element). Finally, the microscopic failure analysis is performed for the open-hole composite laminate specimen model by applying a failure load obtained from tensile test, and the predicted failure indices are evaluated for verification of the developed program.

Effects of Specimen Size and Testing Velocity on Puncture Properties of Short-fiber Reinforced Chloroprene Rubber (시편 크기 및 시험속도가 단섬유 강화 클로로프렌 고무의 관통 특성에 미치는 영향)

  • Ryu, Sang-Ryeoul;Lee, Dong-Joo
    • Composites Research
    • /
    • v.20 no.6
    • /
    • pp.28-33
    • /
    • 2007
  • The puncture properties of short-fiber reinforced rubber were investigated as functions of fiber aspect ratio(AR: length of fiber/diameter of fiber), fiber content, specimen size and testing velocity. The puncture stresses of the matrix and short-fiber reinforced rubber decreased with specimen size, and increased with testing velocity at same specimen size. As the fiber AR increased the puncture stress at given fiber content also increased. The problem of the specimen shape was investigated by the comparison of the tensile strength with puncture stress. The forces acting in the membrane wall of the matrix and the short-fiber reinforced rubber showed a similar data regardless of specimen size. And those increased with testing velocity at same specimen size. As the fiber AR increased the force acting in the wall at given fiber content also increased. Overall, it was found that the specimen size, testing velocity had an important effects on the puncture properties.

The Influence of Mechanical Properties with the Number of Recycling of Fiber-reinforced Thermoplastic Composites Damaged by Impact (충격에 의해 손상된 섬유강화 열가소성 수지 복합재료의 재활용 횟수에 따른 물성의 변화)

  • Bae, Kwak Jin;Lee, Joon Seok
    • Composites Research
    • /
    • v.35 no.2
    • /
    • pp.75-79
    • /
    • 2022
  • In this study, the effect of mechanical and chemical properties of glass fiber reinforced thermoplastic (GFRTPs) according to the number of recycling was confirmed. The composite materials were manufactured through a hot press compression molding process using an E-glass chopped strand mat and a polypropylene film. Four specimens were named according to the number of recycled test repeat: First manufacture, 1st Recycle, 2nd Recycle, and 3rd Recycle. To investigate the mechanical properties of the prepared specimen, tensile test, flexural test, drop-weight impact test, differential scanning calorimetry (DSC), and field emission electron gun-scanning electron microscope (FE-SEM) was performed. As a result, as the number of recycling steps repeat, the degree of crystallization, tensile strength, elastic modulus, and flexural strength were increased, but the impact properties were greatly reduced.

Fabrication of Nano-Size Specimens for Tensile Test Employing Nano-Indentation Device (나노 인장시험을 위한 압축 시험기용 인장시편 제작에 관한 연구)

  • Lim, Tae Woo;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.10
    • /
    • pp.911-916
    • /
    • 2015
  • In the nano/micro scale, material properties are dependent on the size-scale of a structure. However, conventional micro-scale tensile tests have limitations to obtain reliable values of nano-scale material properties owing to residual stress and elastic slippage in the gripping/aligning process. The indenter-driven nano-scale tensile test provides prominent advantages simple testing device, high-quality nano-scale metallic specimen with negligible residual stress. In this paper, two-types of specimens (a specimen with multi-testing parts and a specimen with a single-testing part) are discussed. Focused ion beam (FIB) is employed to fabricate a nano-scale specimen from a thin nickel film. Using the specimen with a single-testing part, we obtained a nano-scale stress-strain curve of electroplated nickel film.

Cleavage Dependent Indirect Tensile Strength of Pocheon Granite Based on Experiments and DEM Simulation (포천화강암의 결에 따른 간접인장강도 특성에 대한 실험 및 개별요소 수치해석)

  • Zhuang, Li;Diaz, Melvin B.;Jung, Sung Gyu;Kim, Kwang Yeom
    • Tunnel and Underground Space
    • /
    • v.26 no.4
    • /
    • pp.316-326
    • /
    • 2016
  • The purpose of this study is to investigate the influence of cleavages on indirect tensile strength (ITS) of the granite. Brazilian disc tests and ring tests with three different hole sizes were performed. 2D DEM (Discrete Element Method) simulation was employed to further understand the failure process during the tests and the mechanism behind. Results show that ITS decreases across hardway, grain and rift cleavage. Measured average ITS from ring tests is about 2.5 ~ 6.4 times of those measured from Brazilian disc tests, and it decreases with increasing ratio of diameters of inner hole and specimen. Failure pattern in ring tests is influenced by both hole size and relative positions of cleavages parallel and perpendicular to the loading direction.