• Title/Summary/Keyword: 인장변형률 성능

Search Result 106, Processing Time 0.027 seconds

Tensile Performance of PE Fiber-Reinforced Highly Ductile Cementitious Composite including Coarse Aggregate (골재의 입도분포 변화에 따른 PE 섬유보강 고연성 시멘트 복합체의 인장성능)

  • Lee, Bang Yeon;Kang, Su-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.95-102
    • /
    • 2020
  • For the purpose of developing a PE fiber-reinforced highly ductile cementitious composite having high tensile strain capacity more than 2% under the condition of containing aggregates with large particle size, this study investigated the tensile behavior of composites according to the particle size and distribution of aggregates in the composite. Compared with the mixture containing silica sand of which particle size is less than 0.6 mm, mixtures containing river sand and/or gravel with the maximum particle size of 2.36 mm, 4.75 mm, 5.6 mm, 6.7 mm were considered in the experimental design. The particle size distributions of aggregates were adjusted for the optimized distribution curves obtained from modified A&A model by blending different sizes of aggregates. All the mixtures presented clear strain-hardening behavior in the direct tensile tests. The mixtures with the blended aggregates to meet the optimum curves of aggregate size distributions showed higher tensile strain capacity than the mixture with silica sand. It was also found that the tensile strain capacity was improved as the maximum size of aggregate increased which resulted in wider particle size distribution. The mixtures with the maximum size of 5.6 mm and 6.7 mm presented very high tensile strain capacities of 4.83% and 5.89%, respectively. This study demonstrated that it was possible to use coarse aggregates in manufacturing highly ductile fiber-reinforced cementitous composite by adjusting the particle size distribution.

Experimental Investigation of the Flexural Behavior of Lightweight Aggregate Concrete Beams (경량 콘크리트 보의 휨 거동에 관한 실험적 연구)

  • Byon, Eun-Hyuk;Cho, Jang-Se;Lee, Young-Hak;Kim, Hee-Cheul
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.441-444
    • /
    • 2010
  • 대공간 구조물과 초고층 빌딩에 있어 건축물의 자중 감소에 대한 요구가 늘어나고 있으며 이에 대한 가장 효과적인 방법 중 하나는 경량 콘크리트를 사용하는 것이다. 본 연구는 최외단 철근의 순인장 변형률에 따른 경량콘크리트 보의 휨 거동 및 휨 성능을 평가하는 것에 그 목적이 있다. 크기와 형상이 동일한 보통중량 콘크리트 보 1개와 경량 콘크리트 보 4개의 총 5개 시험체를 제작하여 최외단 철근의 순인장 변형률을 변수로 실험을 수행하였으며 이를 통해 순인장 변형률에 따른 경량콘크리트 보의 강도와 연성의 변화를 분석하였다. 실험 결과 최외단 철근의 순인장 변형률이 증가할수록 시험체의 연성비는 증가하였으며 최대하중과 강성은 감소하였다. 특히 순인장 변형률 0.005 이상에서 연성지수 2 이상을 확보할 수 있었다.

  • PDF

Tensile Behavior of Highly Ductile Cementitious Composites Using Normal Sand as Fine Aggregate (일반모래를 잔골재로 사용한 고연성 시멘트 복합체의 인장거동)

  • Lee, Bang Yeon;Kang, Su-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.178-184
    • /
    • 2017
  • This study was aimed to investigate the tensile behaviors of PE(Polyethylene) fiber-reinforced highly ductile cementitious composites with different combinations of micro silica sand and normal sand(river sand) with maximum particle size of 4.75 mm. Flow test result indicated the increase of flowability with higher replacement ratio of river sand. There was no noticeable difference in the mean compressive strength with different replacement ratio of river sand, but the variation in the compressive strength increased as higher amount of river sand was adopted for the replacement. The difference in the uniaxial tensile strength was negligible, but the tensile strain capacity was significantly influenced by the replacement ratio of river sand. It is thought that increased density of multiple cracks induced improved tensile strain capacity when higher percentage of river sand was adopted for fine aggregate. The deviation in the strain capacity increased as the replacement ratio of river sand was higher, as in the compressive strength. This study presented the feasibility of using normal sand instead of micro silica sand for highly ductile cementitious composites with equivalent or better uniaxial tensile performance, even though it might increase the deviation in the performance.

Experimental Investigation of the Flexural Behavior of Polymer-modified Lightweight Aggregate Concrete One-Way Members (폴리머 개질 경량콘크리트 일방향 부재의 휨 거동에 관한 실험적 연구)

  • Byon, Eun-Hyuk;Kim, Min-Sook;Lee, Young-Hak;Kim, Hee-Cheul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.5
    • /
    • pp.551-557
    • /
    • 2010
  • The purpose of this study is to estimate experimentally the flexural behavior, capacity and validity of existing regulation of net tensile strain in lightweight concrete beams and polymer modified lightweight concrete beams. One normal weight concrete beam and four lightweight concrete beams, three polymer modified lightweight concrete beams were constructed as same figure and attempted to evaluate the difference of strength and ductility in specimens of different net tensile strain in extreme tension steel. Test results are indicated in terms of load-deflection behavior and ductility index. As the value of net tensile strain increased, the flexural strength and stiffness of specimen decreased but ductility index increased in both of lightweight concrete beams and polymer modified lightweight concrete beams. It is considered that to achieve similar ductility index of normal weight concrete, net tensile strain in extreme tension steel should exceed 0.005 for lightweight concrete beam and polymer modified lightweight concrete beam.

Experimental Evaluation of Seismic Performance of Laminated Elastomeric Bearing and Lead-Rubber Bearing (적층고무베어링과 납-고무베어링의 내진 성능에 관한 실험적 평가)

  • 김대곤;이상훈;김대영;박칠림
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.4
    • /
    • pp.53-62
    • /
    • 1998
  • Experimental studies for the laminated elastomeric bearing and the lead-rubber bearing, those are often used to improve the seismic capacity of the structures recently, are conducted to evaluate the seismic capacity of the bearings. The shear stiffness of the bearings decreases as the shear strain amplitude or the constant axial load level increases, but not sensitive to the strain rates effect. Bearings are strong for the axial compression but weak for the axial tension.

  • PDF

Numerical Assessment of Tensile Strain Capacity for X80 Line Pipe Using GTN Model (GTN 모델을 이용한 X80 라인파이프의 인장 변형성능 해석)

  • Yoon, Young-Cheol;Kim, Ki-Seok;Lee, Jae Hyuk;Cho, Woo-Yeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.979-990
    • /
    • 2016
  • This study presents a nonlinear finite element procedure involving a phenomenological model to validate the tensile strain capacity of the X80 line pipe developed for the strain-based design purpose. The procedure is based on the Gurson-Tvergaard-Needleman (GTN) model, which models nucleation, growth and coalescence of void volume fraction occurred inside a metal. In this study, the user-defined material module (UMAT) is implemented in the commercial finite element platform ABAQUS and is applied to the nonlinear damage analysis of steel specimens. Material parameters for the nonlinear damage analysis of base and weld metals are calibrated from numerical simulations for the tensile tests of round bar and full thickness specimens. They are then employed in the numerical simulations for SENT (Single Edge Notch Tension) test and CWPT (Curved Wide Plate Test) and in the simulations, the tensile strain capacities are naturally evaluated. Comparison of the numerical results with the experimental results and the conventional empirical formulae shows that the proposed numerical procedure can fairly well predict the tensile strain capacity of X80 line pipe. So, it is readily expected to be effectively applied to the strain-based design procedure.

Development of Hybrid Fiber-reinforced High Strength Lightweight Cementitious Composite (하이브리드 섬유로 보강한 고강도 경량 시멘트 복합체의 개발)

  • Bang, Jin-Wook;Kim, Jung-Su;Lee, Bang-Yeon;Jang, Young-Il;Kim, Yun-Yong
    • Composites Research
    • /
    • v.23 no.4
    • /
    • pp.35-43
    • /
    • 2010
  • The purpose of this paper is to develop a Hybrid Fiber-reinforced High Strength Lightweight Cementitious Composite (HFSLCC) incorporated with lightweight filler and hybrid fibers for lightness and high ductility. Optimal ingredients and mixture proportion were determined on the basis of the micromechanical analysis and the steady-state cracking theory considering the fracture characteristics of matrix and the interfacial properties between fibers and matrix. Then 4 mixture proportions were determined according to the type and amount of fibers and the experiment was performed to evaluate the mechanical performance of those. The HFSLCC showed 3% of tensile strain, 4.2MPa of ultimate tensile stress, 57MPa of compressive strength and $1,660kg/m^3$ of bulk density. The mechanical performance of HFSLCC incorporated with PVA fibers of 1.0 Vol.% and PE fibers of 0.5 Vol.% is similar to those of the HFSLCC incorporated with fibers of 2.0 Vol.%.

Material Strength and Deformation Performance of Highly Ductile High-Strength Cement Composite (높은 연성을 갖는 고강도 시멘트계 복합체의 재료강도 및 변형성능)

  • Choi, Jeong-Il;Lee, Bang Yeon;Kim, Yun Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.51-58
    • /
    • 2020
  • The purpose of this study is to investigate experimentally the material strength and tensile deformation behavior of highly ductile high-strength cement composites reinforced by synthetic fibers. Materials and mixture proportions were designed to make composites with a strength level of 80 MPa in compression. Two kinds of polyethylene fibers with different properties were employed as reinforcing fibers. A series of experiments on density, compressive strength, and deformation performance was performed. Experimental results showed that the tensile behavior and cracking patterns of cement composite strongly depends on the types of reinforcing fibers. It was also demonstrated that the cement composite with a compressive strength of 77.7 MPa and a tensile strain capacity of 7.9% can be manufactured by using a proper polyethylene fiber.

Serviceability Verification Based on Tension Stiffening Effect in Structural Concrete Members (인장증강효과에 기반한 콘크리트 구조 부재의 사용성능 검증)

  • Lee, Gi-Yeol;Kim, Min-Joong;Kim, Woo;Lee, Hwa-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.1
    • /
    • pp.15-23
    • /
    • 2012
  • This paper is about proposal of a calculation method and development of an analytical program for predicting crack width and deflection in structural concrete members. The proposed method numerically calculate stresses in steel rebar using a parabola-rectangle stress-strain curve and a modified tension stiffening factor considering the effect of the cover thickness. Based on the study results, a calculation method to predict crack width and deflection in reinforced concrete flexural members is proposed utilizing effective tension area and idealized tension chord as well as effective moment-curvature relationship considering tension stiffening effect. The calculation method was applied to the test specimens available in literatures. The study results showed that the crack width and deflections predicted by the proposed method were closed to the experimentally measured data compared the current design code provisions.

Evaluation of Dynamic Tensile Strength of HPFRCC According to Compressive Strength Level (압축강도 수준에 따른 HPFRCC의 동적충격 인장강도 평가)

  • Park, Gi-Joon;Kim, Won-Woo;Park, Jung-Jun;Moon, Jae-Heum;Kim, Sung-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.31-37
    • /
    • 2018
  • This study evaluates the dynamic tensile behavior of HPFRCC according to compressive strength levels of 100, 140 and 180 MPa. Firstly, the compressive stress-strain relationship of 100, 140 and 180 MPa class HPFRCC was analyzed. As a result, the compressive strengths were 112, 150 and 202 MPa, respectively, and the elastic modulus increased with increasing compressive strength. The static tensile strengths of HPFRCC of 100, 140 and 180 MPa were 10.7, 11.5 and 16.5 MPa, and tensile strength also increased with increasing compressive strength. On the other hand, static tensile strength and energy absorption capacity at 100 and 140 MPa class HPFRCC showed no significant difference according to the compressive strength level. It was influenced by the specification of specimen and the arrangement of steel fiber. As a result of evaluating the dynamic impact tensile strength of HPFRCC, tensile strength and dynamic impact factor of all HPFRCCs tended to increase with increasing strain rate from 10-1/s to 150/s. In the same strain rate range, the DIF of the tensile strength was measured higher as the compressive strength of HPFRCC was lower. It is considered that HPFRCC of 100 MPa is the best in terms of efficiency. Therefore, it is advantageous to use HPFRCC with high compressive strength when a high level of tensile performance is required, and it is preferable to use HPFRCC close to the target compressive strength for more efficient approach at a high strain rate such as explosion.