• Title/Summary/Keyword: 인장강도감소

Search Result 971, Processing Time 0.026 seconds

Tensile Strength Change of Circular Structural member with Artificial Sectional Surface Damage (인위적 표면 단면손상 수준에 따른 원형 부재의 인장성능 변화)

  • Ha, Min-Gyun;Kwon, Tae-Yun;Lee, Won-Hong;Ahn, Jin-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.3
    • /
    • pp.100-109
    • /
    • 2021
  • This study was examined the tensile strength change of a circular tubular member with artificial sectional damage on its surface to consider surface sectional damage by corrosion. The tensile strength tests were conducted using circular tubular specimens with artificial sectional damage considering sectional damaged height and width on its surface according to the corrosion level. From the tensile strength test results, it is confirmed that tensile strength of the circular tubular specimens was affected by the damaged circumference (damaged width), not damaged length (damaged height) and their tensile failures were appeared at the minimum section of the artificial sectional damage part. Nonlinear finite-element analyses were conducted considering equivalent sectional damage effect on sectional damaged part in tensile specimens to examine the change in the tensile strength of tubular specimens with artificial sectional damage since it is difficult to estimate the sectional damaged surface condition of the specimens clearly. From the nonlinear finite element analysis results for the tensile test specimens, tensile strengths of test specimens with irregular sectional damaged surface were relatively evaluated to be highly decreased than these of FE analysis model with equivalent sectional damage. Therefore, residual tensile strengths of tensile members with irregular sectional damage as local corrosion can be evaluated and predicted using correlation coefficient between tensile test results and FE analysis results with equivalent sectional damage.

Compressive and Tensile Behaviors of High Performance Hybrid Fiber Reinforced Concrete (고성능 하이브리드 섬유보강 콘크리트의 압축 및 인장 거동)

  • Kwon, Soon-Oh;Bae, Su-Ho;Lee, Hyun-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.458-466
    • /
    • 2020
  • The purpose of this experimental research is to evaluate the compressive and tensile behaviors of high performance hybrid fiber reinforced concrete(HPHFRC) using amorphous steel fiber(ASF) and polyamide fiber(PAF). For this purpose, the HPHFRCs using ASF and PAF were made according to their total volume fraction of 1.0% for target compressive strength of 40MPa and 60MPa, respectively. And then the compressive and tensile behaviors such as the compressive strength, compressive toughness, direct tensile strength, and stress-strain characteristics under compressive and tensile tests were estimated. It was observed from the test results that the compressive strength of HPHFRC was slightly decreased than that of plain concrete, but the compressive toughness, compressive toughness ratio, and direct tensile strength of HPHFRC increased significantly. Also, it was revealed that the plain concrete showed brittle fracture after the maximum stress from the stress-strain curves, but HPHFRC showed strain softening.

P.P밴드 Fiber 콘크리트 강도 특성

  • 김수건;손기상
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2002.11a
    • /
    • pp.335-340
    • /
    • 2002
  • P.P밴드는 우리 일상생활에서 값싸고 흔히 쓰인다. 이사 때 또는 물품을 상자로 구입시, 운반시 띠를 공구를 써 매어두는 포장용으로 많이 쓰인다. 문제는 이들 밴드들이 다시 풀기 위해서 절단한 뒤 쓰레기통에, 또는 기타 폐기처리 되는 경우가 너무도 많아서 재활용 차원의 연구가 필요하다는 것이다. 콘크리트 재료의 인장력이 부족한 측면을 보완하고 압축강도가 감소되지 않는다면 어느 정도 그 의미를 찾을 수 있을 것으로 판단된다. P.P밴드(Propylerene) 자체의 인장강도는 190kg을 갖고 있어 포장용으로는 더 없는 소요내력을 값싸게 제공하고 있다.(참고.1)(중략)

  • PDF

Effects of processing conditions on tensile properties and color of Alaska Pollack meal protein isolate film (가공조건이 명태어분단백질 필름의 인장강도와 색에 미치는 영향)

  • YOU Byeong-Jin;SHIM Jae-Man
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.5
    • /
    • pp.418-422
    • /
    • 2000
  • The tensile properties and color of fish meal film under various processing conditions were measured to obtain basic data for biodegradable Alaska Pollack meal protein isolate (APMPI) film. The tensile strength and the elongation of APMPI film were increased with casting volume of APMPI solution but those of APMPI film were weakened with the addition of glycerol amount as well as reduction of pH values. In case of adding various plasticizer, the tensile strength of film was increased in order as follows: sorbitol, polyethylene glycol and glycerol. The elongation was increased in order of polyethylene glycol, sorbitol and glycerol. The tensile strength of film increased with increment of APMPI concentration, but the elongation of film was not affected by APMPI concentration. The tensile strength of APMPI film was decreased with the increment of relative humidity but its elongation was increased with the increment of relative humidity, Not only lightness and yellowness of film added with sorbitol but also redness and total different color of film added with polyethylene glycol showed the highest value in Hunter color system.

  • PDF

Failure Strength Analysis of Simply Supported Sandwich Slab Bridges made by Composite Materials (복합재료로 만들어진 단순지지 샌드위치 슬래브 교량의 파괴강도해석)

  • Han, Bong-Koo;Kim, Se-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.1
    • /
    • pp.77-84
    • /
    • 2007
  • In this paper presented, a design method of sandwich slab bridge of simple supported made by composite materials. Many of the bridge systems, including the girders and cross-beams, and concrete decks behave as the special orthotropic plates. Such systems with sections, boundary conditions other than Navier or Levy solution types, or with irregular cross sections, analytical solution is very difficult to obtain. Thus, Finite Difference Method is used for analysis of the pertinent problem. For the design of bridge made by the composite materials, cross-section is used the form-core shape because of this shape is economical and profitable, and for output of the stress value used F.D.M. Based the experimental of a composite specialist, an equation expressing the rate of decrease of tensile strength of glass fibers based on increase of mass was obtained. From these equations, one can estimate the rate of tensile strength reduction due to increased size. Tasi-Wu failure criterion for stress space is used. Strength-failure analysis procedure, using these reduced tensile strength, is presented.

Effects of Thermal and Mechanical Fatigue Stress on Bond Strength in Bracket Base Configurations (열적, 기계적 피로응력이 교정용 브라켓의 결합강도에 미치는 영향)

  • Kim, Jong-Ghee;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.30 no.5 s.82
    • /
    • pp.625-642
    • /
    • 2000
  • The purpose of this study is to evaluate the effects of mechanical and thermal fatigue stress on the shear, tensile and shear-tensile combined bond strengths(SBS, TBS, CBS) in various orthodontic brackets bonded to human premolars with chemically cured adhesive(Ortho-one, Bisco, USA). Five types of commercially available metal brackets with various bracket base configurations of Photoetched base(Tomy, Japan), Non-Etched Foil Mesh base(Dentaurum, Germany), Micro-Etched Foil Mesh base(Ortho Organizers, USA), Chessboard base(Daesung, Korea), and Integral base(3M Unitek, USA) were used. Samples were divided into 3 groups, the first group was acted with shear-tensile combined loads($45^{\circ}$) of 200g for 4 weeks(mechanical fatigue stress), the second group was subjected to the 5,000 thermocycles of 15 second dwell time each in $5^{\circ}C\;and\;55^{\circ}C$ baths(thermal fatigue stress), and the third group was the control. Bond strengths were measured at the crosshead speed of 0.5mm/min. The cross-section of bracket base/adhesive interface and the fracture surface were examined with the stereoscope and the scanning electron microscope. The resin remnant on bracket base surface was assessed by ART(Adhesive Remnant Index). The obtained results were summarized as follows, 1. In static bond strength, Photoetched base bracket showed the maximum bond strength and Integral base bracket showed the minimum bond strength(p<0.05). In all brackets, shear bond strength(SBS) was in the greatest value and shear-tensile combined strength(CBS) was in the least value(p<0.05). 2. After mechanical fatigue test, Photoetched base bracket showed the maximum bond strength and Integral base bracket showed the minimum bond strength(p<0.05). In Photoetched base bracket and Micro-Etched Foil Mesh base bracket, shear bond strength(SBS), tensile bond strength(TBS) and shear-tensile combined strength(CBS) were decreased after mechanical fatigue test(p

  • PDF

Characteristics of Biodegradable Plastic Vegetation Mats (생분해성 플라스틱 식생매트의 특성)

  • Park, Jin-O;Kim, Ha-Seog;Lee, Sea-Hyun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.112-117
    • /
    • 2016
  • This research compared the tensile performance of the vegetation mat, which was developed byu using the rapidly growing biodegradable plastic, Poly Lactic Acid(PLA), according to the biodegradation period. The test applied the method defined by Korean Standard KS. In the result of experiment using single-material PLA mesh and PLA plastic, the tensile strength and molecular weight were inverse-proportional to the 5 months of biodegradation period. The thickness of PLA mesh was increased by 11.2~13.4% while the tensile strenth of it was reduced by 32.4~55.4%. The tensile strength and molecular weight of PLA plastic were also reduced over time. However, the tension test of vegetation mat comprised of PLA mesh, non-woven fabric (including seeds), and jute net didn't have specific tendency.

Characteristics of Thermal Degradation for Carbon Fiber/Epoxy Composite using Strand Specimen (스트랜드 인장시편을 적용한 탄소섬유/에폭시 복합재의 열화특성 연구)

  • Oh, Jin-Oh;Kil, Hyung-Bae;Yoon, Sung-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.408-410
    • /
    • 2012
  • In this study, High temperature properties of carbon fiber reinforced composites is performed using strand specimens and resin specimens. As for the tensile test at the different temperature, the tensile modulus of resin specimens decreases slightly until the temperature reaches the glass transition temperature. but the tensile modulus of strand specimens maintains tensile modulus at the room temperature. The tensile strength of resin and strand specimens decreases rapidly until the temperature reaches the glass transition temperature.

  • PDF

Effect of Temperalure on Index Pmperties and Brazilian Tensile Strength of Rocks (온도변화가 암석의 기본물성과 압렬인장특성에 미치는 영향)

  • 이찬구;최원학;장천중;김지영;이지훈
    • The Journal of Engineering Geology
    • /
    • v.5 no.1
    • /
    • pp.21-29
    • /
    • 1995
  • Among the index properties of granite and andesite, the relation between porosity and water content is highly correlated, but specific gravity, porosity and water content have loW relation with P wave velocity and their relationship showed dispersed zone type. With raising the temperature, Brazilian tensile strength was not changed remarkably, but decreased near $100^{\circ}C$. After the strength increased at $150^{\circ}C$, it decreased near $200^{\circ}C$ in granite. In andesite, however, the strength was increased up to $200^{\circ}C$, and then decreased. The variations of P wave velocity at each temperature zone are similar to those of tensile strength.

  • PDF

The Importance of Size/scale Effect in the Failure of Composite Structures (복합재료 구조물의 파괴에 대한 치수효과의 중요성)

  • Kim, Duk-Hyun;Kim, Doo-Hwan
    • Composites Research
    • /
    • v.17 no.4
    • /
    • pp.1-6
    • /
    • 2004
  • In this paper, the importance of the size effects on the strength ratio is demonstrated by numerical results. The rate of decrease of tensile strength is for glass fiber, based on the experience of a composite manufacturing specialist. For other material, similar procedure may be used until detailed test result on such material is available. The strength criterion used is that of Tsai-Wu fur stress space. The factors influencing the ratio are, reducing the tensile strength alone or both tensile and compression strengths, selection of the normalized interaction term, that is, the generalized von Mises criterion or the Hill's criterion, and the status of applied stresses. Some of the numerical results are presented for a guideline for the future study.