• Title/Summary/Keyword: 인자

Search Result 18,347, Processing Time 0.044 seconds

Measuring Reusability of the Function-Oriented Component Based on Rough and Fuzzy Sets (러프집합과 퍼지집합에 기반한 기능중심 컴포넌트의 재사용도 측정)

  • 김혜경
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.4
    • /
    • pp.375-383
    • /
    • 1999
  • 사용자가 최소의 이해와 수정 노력으로 적합한 컴포넌트를 선택할수 있는 방안이 요구된다, 따라서 본 논문에서는 컴포넌트의 재사용도 측정을 위한 혼합적 척도를 제안한다. 현업에서의 연구와 경험을 통해서 증명된 객관성 있는 척도들을 측정인자로 설정한다. 러프집합을 이용하여 각측정인자들이 컴포넌트 재상요에 미치는 영향의 정도를 평가하고 각 측정인자들의 상대적 중요도를 구한다, Sugeno의 퍼지적분을 이용하여 측정인자들의 중요도와 측정값들을 종합함으로써 컴포넌트들의 재사용도를 측정한다. 마지막으로 제안된 ordinal scale과 ratio scale에 따름을 보여준다.

  • PDF

화상 분석을 이용한 직물 구성 인자의 객관적 측정

  • 최수현;강태진;이승구
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.10a
    • /
    • pp.373-376
    • /
    • 1998
  • 직물에 있어서 경ㆍ위사의 밀도, crimp, cover factor, 직물의 두께, 무게 둥은 경ㆍ위사의 섬도, 직물의 패턴 등과 더불어 직물의 특성을 나타내는 기본적인 인자들이며 이러한 직물 구성 인자간의 관계에 대하여 Peirce의 연구[1] 이래 많은 연구가 이루어져 왔다. 그러나 이러한 인자들을 실제로 측정하기 위해서는 직물을 자르거나 분해하여야 하며, 측정에 많은 시간이 소요되고, 측정 방법이나 기기 또는 측정자에 따라 측정치에 차이가 나는 등의 단점이 있다. (중략)

  • PDF

Optimization of Generalized Regression Neural Network Using Statistical Processing (통계적 처리를 이용한 일반화된 회귀 신경망의 분류성능의 최적화)

  • Kim, Geun-Ho;Kim, Byun-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2749-2751
    • /
    • 2002
  • 일반화된 회귀 신경망 (GRNN)을 이용하여 플라즈마을 분류하는 새로운 알고리즘을 보고한다. 데이터분포를 통계적인 평균치와 표준편차를 이용하여 특징지었으며, 바이어스 인자을 이용하여 9 종류의 데이터을 발생하였다. 각 데이터에 대하여 GRNN의 학습인자를 최적화하였으며, 모델성능은 예측과 분류 정확도로 나누어 바이어스와 학습인자의 함수로 분석하였다. 바이어스는 모델성능에 상당한 영향을 주었으며, 학습인자와의 상호작용을 통하여 완전 분류를 이루었다.

  • PDF

Development of an Optical Payload Simulator for KOMSAT-3 (다목적 실용위성 3호 광학탑재체 묘사기 개발)

  • Lee, Jong-Hun;Lee, Jun-Ho;Kim, Hui-Seop
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2008.07a
    • /
    • pp.399-400
    • /
    • 2008
  • 본 논문은 광학 탑재체에서 성능예측에 있어 주요 MTF인자를 MATLAB으로 계산하여 기본 광학계 성능 해석 모델을 통합적인 툴로 구현하였다. 그 결과 광학 탑재체 성능 해석에 있어 광학 탑재체의 초기 설계 단계에서 주요 설계인자를 도출하여, 인공위성 광학 탑재체에 있어 지배적인 영향을 미치는 Jitter, Smear, Detector sampling, Detector diffusion등의 MTF인자 및 PSF인자들을 활용하여 광학 탑재체의 성능 예측을 수행함에 있어 간단하고 효율적인 툴을 개발하였다.

  • PDF

Estimation of Hydrometeorologic Parameters using DHSVM (DHSVM을 이용한 수문기상인자 산정)

  • Cho, Hyungon;Kim, Gwangseob
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.222-222
    • /
    • 2016
  • 기후변화에 의한 자연재해의 규모와 빈도가 증가함에 따라 수자원 영향 평가 및 대응전략 수립을 위한 연구가 활발히 이루어지고 있다. 본 연구에서는 물리기반의 분포형 수문기상모형인 DHSVM을 이용하여 2012년-2014년 동안의 한반도 유역의 기상인자 자료를 수집하여 증발산, 토양수분, 현열, 잠열, 지열, 순복사량 등의 수문기상인자를 산정하였다(Fig. 1). 모형의 적합성 평가를 위해서 안동댐 유역에 대하여 검정통계량으로 NSE(Nash-Sutucliffe model efficiency coefficient), RMSE, $R^2$, MAPE(mean absolute percentage error example)위한 계산하였다.

  • PDF

Determination of Optimized Operational Parameters for Photocatalytic Oxidation Reactors Using Factorial Design (요인분석법을 이용한 광촉매 산화반응조의 최적 운영인자 도출)

  • Hur, Joon-Moo;Cheon, Seung-Yul;Rhee, In-Hyoung;Kim, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.2
    • /
    • pp.85-91
    • /
    • 2004
  • The objective of this study is to determine the optimum conditions of operational parameters using factorial design for phenol degradation in photocatalytic oxidation reactors. Factorial design is widely used to select the dominant factors and their ranges in experiments involving several factors where it is necessary to study the effect of factors on a response. The effects of initial concentration of phenol, intensity of UV light and surface area of catalyst on phenol degradation were investigated. Two levels were considered in this study so that the experiment was a $2^3$ factorial design with three replicates. The experimental results show that an increase in initial concentration of phenol from 5 to 50 mg/L intensity of UV light from 5,000 to $20,000\;{\mu}W/cm^2$, and surface area of catalyst from 740 to $2,105\;cm^2$ enhanced the phenol degradation rate by an average of 1.86, 1.79, and 2.10 mg/L hr, respectively. Interaction effects do not appear to be as large on the phenol degradation rate as the main effects of single factors. The optimum working condition for photocatalytic oxidation reactors, despite the higher three factors the better removal rate, is the highest surface area or catalyst.

In silico Analysis of Downstream Target Genes of Transcription Factors (생명정보학을 이용한 전사인자의 하위표적유전자 분석에 관한 연구)

  • Hwang, Sang-Joon;Chun, Sang-Young;Lee, Kyung-Ah
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.33 no.2
    • /
    • pp.125-132
    • /
    • 2006
  • Objective: In the previous study, we complied the differentially expressed genes during early folliculogenesis. Objective of the present study was to identify downstream target genes of transcription factors (TFs) using bioinformatics for selecting the target TFs among the gene lists for further functional analysis. Materials & Methods: By using bioinformatics tools, constituent domains were identified from database searches using Gene Ontology, MGI, and Entrez Gene. Downstream target proteins/genes of each TF were identified from database searches using TF database ($TRANSFAC^{(R)}$ 6.0) and eukaryotic promoter database (EPD). Results: DNA binding and trans-activation domains of all TFs listed previously were identified, and the list of downstream target proteins/genes was obtained from searches of TF database and promoter database. Based on the known function of identified downstream genes and the domains, 3 (HNF4, PPARg, and TBX2) out of 26 TFs were selected for further functional analysis. The genes of wee1-like protein kinase and p21WAF1 (cdk inhibitor) were identified as potential downstream target genes of HNF4 and TBX2, respectively. PPARg, through protein-protein interaction with other protein partners, acts as a transcription regulator of genes of EGFR, p21WAF1, cycD1, p53, and VEGF. Among the selected 3 TFs, further study is in progress for HNF4 and TBX2, since wee1-like protein kinase and cdk inhibitor may involved in regulating maturation promoting factor (MPF) activity during early folliculogenesis. Conclusions: Approach used in the present study, in silico analysis of downstream target genes, was useful for analyzing list of TFs obtained from high-throughput cDNA microarray study. To verify its binding and functions of the selected TFs in early folliculogenesis, EMSA and further relevant characterizations are under investigation.

Assessment factors for the Selection of Priority Soil Contaminants based on the Comparative Analysis of Chemical Ranking and Scoring Systems (국내.외 Chemical Ranking and Scoring 체계 비교분석을 통한 우선순위 토양오염물질 선정을 위한 평가인자 도출)

  • An, Youn-Joo;Jeong, Seung-Woo;Kim, Tae-Seung;Lee, Woo-Mi;Nam, Sun-Hwa;Baek, Yong-Wook
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.6
    • /
    • pp.62-71
    • /
    • 2008
  • Soil quality standards (SQS) are necessary to protect the human health and soil biota from the exposure to soil pollutants. The current SQS in Korea contain only sixteen substances, and it is scheduled to expand the number of substances. Chemical ranking and scoring (CRS) system is very effective to screen the priority chemicals for the future SQS in terms of their toxicity and exposure potential. In this study, several CRS systems were extensively compared to propose the assessment factors that required for the screening of soil pollutants The CRS systems considered in this study include the CHEMS-1 (Chemical Hazard Evaluation for Management Strategies), SCRAM (Scoring and Ranking Assessment Model), EURAM (European Union Risk Ranking Method), ARET (Accelerated Reduction/Elimination of Toxics), CRSKorea, and other systems. The additional assessment factors of CRS suitable for soil pollutants were suggested. We suggest soil adsorption factor as an appropriate factor of CRS system to consider chemical transport from soil to groundwater. Other factors such as soil emission rate and cases of accident of soil pollutants were included. These results were reflected to screen the priority chemicals in Korea, as a part of the project entitled ‘Setting the Priority of Soil Contaminants'.

The Effects of the topographical, Soil and Meterological Factors on the Tree Height Growth in the Pinus thunbergii Stands (지형(地形), 토양(土壤) 및 기상인자(氣象因子)가 해송(海松)의 수고생장(樹高生長)에 미치는 영향(影響))

  • Son, Yeong Mo;Chung, Young Gwan
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.3
    • /
    • pp.380-390
    • /
    • 1994
  • This study was conducted to investigate the effects of the topographical factors (16 items), physico-chemical properties of soil (13 items) and meteorological factors(9 items) on the height growth of Pinus thunbergii stands along the coastal area in Korea. According to the coefficients by partial correlation analysis in total area, it was found that tree height growth was considerably affected by local topography, soil hardness, soil B-horizental depth, effective soil depth, soil moisture, parent rock, soil texture, and etc.. And the soil factors were available $P_2O_5$, total nitrogen, base saturation, exchangeable $Ca^{{+}+}$, and etc.. In partial correlation analysis, annual relative humidity, annual precipitation, index of aridity, and etc. were found to be the most important factors influencing on tree height growth of Pinus thunbergii stands. In conlusion, the topographical, soil and meteorological factors have multiplex influence on the tree height growth in the Pinus thunbergii stands. They promise to provide the basis of improving not only the selection of suitable sites and the management of soil fertilizer but also the estimation of growth and yield. Hence these results would be used successfully for the design in the scientific forest working plan.

  • PDF

Animal Models for the IGF-1 Signal System in Longevity (장수와 관련된 IGF-1 신호 시스템을 연구하기 위한 동물 모델)

  • Kwak, Inseok
    • Journal of Life Science
    • /
    • v.22 no.10
    • /
    • pp.1428-1433
    • /
    • 2012
  • Longevity is an exciting but difficult subject to study because it is determined by complex processes that require the coordinated action of several genetic factors as well as physiological and environmental influences. Genetic approaches have been applied to animal models to identify the molecular mechanism responsible for longevity. Several experimental model organisms obtained over the last decades suggest that the complete deletion of a single gene by gene targeting has proven to be an invaluable tool for the discovery of the mechanisms underlying longevity. The first discovery of long-lived mutants came from Caenorhabditis elegans research, which identified the insulin/IGF-1 pathway as responsible for longevity in this worm. IGF-1 is a multifunctional polypeptide that has sequence similarity to insulin and is involved in normal growth and development of cells. Several factors in the IGF-1 system have since been studied by gene targeting in the control of longevity in lower species, including nematode and fruit fly. In addition, significant progress has been made using mice models to extend the lifespan by targeted mutations that interfere with growth hormone/IGF-1 and IGF-1 signaling cascades. A recent finding that IGF-1 is involved in aging in mice was achieved by using liver-specific knockout mutant mice, and this clearly demonstrated that the IGF-1 signal pathway can extend the lifespan in both invertebrates and vertebrate models. Although the underlying molecular mechanisms for the control of longevity are not fully understood, it is widely accepted that reduced IGF-1 signaling plays an important role in the control of aging and longevity. Several genes involved in the IGF-1 signaling system are reviewed in relation to longevity in genetically modified mice models.