본 논문은 인용필드 정규화와 인용매칭의 관계에 대한 분석을 제시한다. 인용매칭은 논문에서 수집된 인용레코드의 인용필드들 간의 비교 결과를 조합하여 동일 논문의 참조여부를 판별하여 인용레코드를 군집화한다. 따라서 인용매칭에 성능을 높일 수 있는 인용필드와 인용매칭 성능의 관계에 대한 연구가 필요하다. 본 논문에서는 인용필드 정규화 및 필드 별 결합에 의하여 인용매칭 성능이 변화하는 것을 보였다. 또한, 인용매칭 성능을 인용필드 유사도와의 관점에서 분석하였다. 앞으로, 인용필드 정규화 및 특성이 인용매칭에 미치는 영향에 대한 이해를 넓혀, 이를 인용매칭에 활용할 수 있으리라 여겨진다.
인용 매칭(Citation Matching, CM)은 동일한 논문을 지칭하는 인용레코드(Citation Record)를 군집화하는 것으로 인용 관계를 가진 사회연계망 구축시 필요한 기술의 하나이다. 인용 매칭의 전단계로써, 인용 레코드를 저자, 논문 제목, 게재지명, 발행연도 등의 필드로 구분하는 인용 필드 분해가 고려될 수 있다. 본 논문은 인용 필드 분해(Citation Field Segmentation, CFS)와 인용 매칭의 상관관계를 분석하고자 한다. 즉, 인용 필드 분해가 인용 매칭에 필수적인 단계인지를 밝히고 개별 인용 필드가 인용 매칭에 미치는 영향을 분석한다. 실험을 통해 인용 필드 분해를 한 인용 매칭(CFS-based CM)이 인용 필드 분해를 적용하지 않은 인용 매칭(CFS-free CM)에 비해 1% 내외의 성능의 차이를 보이므로, 인용매칭의 성능에 크게 영향을 미친다고 보기 어려웠다. 이는 인용 레코드의 서로 다른 필드들 사이에서 어휘 중복 비율이 크게 낮기 때문에 따로 필드를 구별하지 않아도 필드가 구별되는 특성때문이었다.
본 연구는 학술커뮤니케이션에서 활용되는 온라인 전자출판물의 이용과 인용도에 대한 상관관계 분석과 유용성의 차이를 평가하고자 하는 연구목적을 수행하기 위해 학술지에 게재된 게재기사에 온라인 전자출판물을 인용한 저자들을 대상으로 이용도와 인용도를 조사하였으며, 학술지에 게재된 게재기사에 인용된 온라인 전자 출판물의 사회과학분야와 자연과학분야 간 유용성에 대해 비교 분석하였다. 학술지에 게재된 게재기사에 온라인 전자출판물을 인용한 저자의 이용도와 학술지에 인용된 온라인 전자출판물의 수와 인용비율간의 상관관계는 저자들의 온라인 전자출판물 주당 이용시간과 이용종수가 증가하더라도 저자들이 학술지에 인용하는 온라인 전자출판물의 수와 인용비율은 증가하지 않는 것으로 나타났다. 사회과학분야와 자연과학분야 간에 있어서 학술지에 인용되는 온라인 전자출판물의 유용성에는 차이가 없었다. 따라서 학술지의 게재기사에 온라인 전자출판물을 인용한 저자들이 온라인 전자출판물을 많이 이용하는 것과 온라인 전자출판물을 실제로 인용하는 것에는 상관관계가 없으며, 측정요소를 통하여 평가한 사회과학 분야와 자연과학분야에서 온라인 전자출판물의 유용성에는 통계적으로 유의미한 차이가 없는 것으로 나타났다.
본 논문은 인용필드의 정규화와 타입이 인용매칭에 미치는 영향에 대한 분석을 제시한다. 인용매칭은 같은 논문을 참조하는 인용레코드를 군집화하는 일련의 과정을 지칭한다. 인용매칭은 인용레코드를 구성하고 있는 인용필드들 간의 비교 결과들을 조합하여 인용레코드의 일치 여부를 판별하는 것이다. 인용매칭 단계 내의 인용필드 간 비교를 위하여 인용필드 정규화 및 인용필드 타입에 대한 연구가 필요하였으나, 인용매칭 방법에 대한 연구에 비해 상대적으로 미흡하였다. 본 연구에서는 인용매칭 성능이 인용필드의 정규화 및 인용필드 타입에 따라 달라진다는 것을 보였다. 추가적으로, 정규화를 적용한 다중 필드 결합을 이용한 인용매칭 성능을 분석하였다. 실험결과에 의하면, 인용필드는 정규화를 통하여 전반적인 성능향상이 있었으며, 인용필드 타입에 따라 성능 양상이 다르게 나타났다.
인용 분석은 정보 검색 위주의 단순 학술정보 서비스를 고도화시킬 기회를 제공한다. 그렇지만, 대부분의 연구가 커뮤니티, 연구자, 논문 간 인용 지수 중심의 분석에 초점을 맞추고 있어, 인용 특성파악을 통한 피인용 논문 정보 서비스를 제공하기에는 어려움이 있다. 본 연구는 논문 내 인용 문구분석을 통해 피인용 논문의 인용 특성을 구조적으로 제시할 수 있는, 피인용 논문을 위한 정보 서비스 가능성을 파악하는 것을 목표로 한다. 구글 스칼라를 통해 확보한 인용-피인용 논문 원문들을 대상으로 인용 유형 비율 분석과 인용 확산 분석을 수행하는 방식으로 피인용 논문 특성을 파악하였으며, 정보 서비스에 반영할 수 있는 가능성을 확인하였다.
인용 및 피인용 구절 분석은 정보 검색 위주의 단순 학술정보 서비스를 고도화시킬 기회를 제공한다. 그렇지만, 대부분의 연구가 커뮤니티, 연구자, 논문 간 인용 지수 중심의 분석에 초점을 맞추고 있어, 인용 구절 분석에 기반한 인용 기반 논문 정보 서비스를 제공하기에는 어려움이 있다. 본 연구는 "딥러닝", "그린에너지", "노령화"라는 세 개의 주제를 대상으로 논문 내 인용 구절 분석을 수행하고, 피인용 논문의 인용 특성을 구조적으로 설명한다. 이를 위해 구글 스칼라를 통해 각 주제에서 가장 많이 인용된 피인용 논문 각 네 편과 모든 인용 논문들을 수집하였으며, 이들을 대상으로 인용 유형 비율 분석과 인용 확산 분석을 수행하는 방식으로 피인용 논문 특성을 파악하고, 정보 서비스에 어떻게 반영할 수 있는지를 논하였다. 본 연구를 기반으로 다양한 인용 분석 연구와 정보 서비스가 개발될 수 있기를 기대한다.
인용 매칭(Citation Matching, CM)은 동일한 논문을 지칭하는 인용레코드(Citation Record)를 군집화하는 방법이다. 일반적으로, 저자, 논문제목, 게재지명이나 출판연도 등의 인용 필드로 구분하는 인용 필드 분해가 인용 매칭 보다 선행하게 된다. 상당히 많은 연구가 인용 매칭과 인용 필드 분해의 문제를 해결하고자 했지만, 인용 필드 분해와 인용 매칭과의 상관관계에 대한 연구는 부족하였다. 인용 매칭에 대한 인용 필드 분해의 여러 측면 중에, 본 논문은 인용 매칭에 가장 영향력이 있는 인용 필드를 밝히고자 한다. 첫 번째 시도로, 수작업으로 인용 필드 분해를 수행한 다양한 크기의 인용 필드 집합에 대하여 인용 매칭의 성능을 비교하였고, 그 결과 많은 인용 필드를 사용한 인용 매칭이 인용 레코드를 더 잘 군집화 할 수 있다는 것을 확인하였다.
저자동시인용(著者同時引用) 분석기법(分析技法)에서, 인용 데이터를 이용하여 형성된 저자군집(著者群集)은 현재의 시점에서 과거의 지적(知的) 구조(構造)를 관찰하는 방법으로써 현재 진행되는 연구경향을 나타낼 수 없다는 제한점을 갖는다는 주장이 있다. 그러므로 본 연구에서는 저자동시인용(著者同時引用) 분석기법(分析技法)에 의해 우러나라 경제학 분야의 지적 구조 및 학문성향을 분석해 보는 한편, 인용한 문헌(文獻)의 색인어(索引語) 분석이라는 새로운 기법을 저자동시인용 분석기법과 함께 사용하여 저자동시인용(著者同時引用) 분석기법(分析技法)의 제한점이 사실인지를 알아 보고자 하였다. 또한, 인용한 문헌의 색인어(索引語) 분석(分析)에 의하여 저자동시인용 분석결과와 해석의 타당성(妥當性)을 검증해 보았다.
딥러닝 연구동향에 대한 계량서지적 분석을 자아 중심 주제 인용분석 기법을 활용하여 시도하였다. 이를 위해서 Web of Science에서 'deep learning'으로 검색된 인용빈도 상위 15건의 논문을 핵심 논문으로 삼고, 이들 핵심 논문 15편을 인용한 논문 집합을 자아 문헌집합으로 삼았으며, 자아 문헌집합들이 인용한 주요 문헌들을 인용 정체성 문헌집합으로 설정하였다. 인용 정체성 문헌집합에 대해 동시인용분석을 실시하여 주요 문헌, 주요 연구 주제를 파악하고, 영향을 끼친 주요 선행 연구를 파악해보았다.
학술 문헌 원문에서 발견되는 인용문은 인용에 기초한 학술문헌 자동 요약, 리뷰 논문 자동 생성, 인용문 감성 분석, 인용문 기반 문헌 검색 등 다양한 학술 정보 서비스의 창출을 가능케 한다. 이러한 서비스가 가능하기 위해서는 원문 텍스트로부터 인용문의 자동 인식이 선행되어야 한다. 그러나 인용문의 인식은 인용 표지가 부착되지 않은 암묵 인용문의 존재로 인해 그 처리가 용이하지 않다. 영어의 경우 최근 이에 대한 연구가 집중되고 있으나 한국어 학술 문헌 내 인용문의 자동 인식 연구는 찾기 힘들다. 이 논문은 한국어 인용문을 자동 인식하는 규칙 기반의 방법을 제시하고 다양한 베이스라인 기법들과 인용문 인식 성능을 비교하였다. 제안된 방법은 테스트 셋 내 전체 암묵 인용문의 30%를 약 70%의 정확률로 인식할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.