본 논문에서는 HMM 의 이산분포를 연속분포로 근사시키는 준 연속분포 HMM 에 의한 한국어 단어인식에 관하여 연구하였다. 이 모델의 생성과정에서는 입력벡터의 출력확률을 혼합 다차원 정규분 포로 가정하여 입력벡터의 확률함수와 코드위드의 심볼출력을 선형결합하므로써, 연속분포 모델로 근사 시켰으며, 단어인식과정에서는 생성모델에 의해 이산분포 모델에서 발생되는 양자와 왜곡을 감소시키므 로써 인식률을 향상시켰다. 이 방법을 평가하기 위하여 DDD 지역명을 대상으로 이산분포 HMM과 준연 속분포 HMM 의 비교실험을 수행하였다. 그 결과 준연속분포 HMM 에 의하여 이산분포 HMM 보다 향상된 인식률을 얻을 수 있었다.
This paper proposes a DMS(Dynamic Multi-Section) model based on the information of the similar features in word pattern. This model represents each word as a time series of several sections and each section implies duration time information and typical feature vectors. The procedure to make a model in the word pattern is that typical feature vector and duration time information are reflected in the distance, when matching between word pattern and model is repeated. As the result of it, the accumulated distance by matching is to be minimized.
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.39-43
/
2023
자동 음성 인식(Automatic Speech Recognition, ASR)은 컴퓨터가 인간의 음성을 텍스트로 변환하는 기술이다. 자동 음성 인식 시스템은 다양한 응용 분야에서 사용되며, 음성 명령 및 제어, 음성 검색, 텍스트 트랜스크립션, 자동 음성 번역 등 다양한 작업을 목적으로 한다. 자동 음성 인식의 노력에도 불구하고 노인 음성 인식(Elderly Speech Recognition, ESR)에 대한 어려움은 줄어들지 않고 있다. 본 연구는 노인 음성 인식에 콘포머(Conformer)와 피쳐 퓨전 모듈(Features Fusion Module, FFM)기반 노인 음성 인식 모델을 제안한다. 학습, 평가는 VOTE400(Voide Of The Elderly 400 Hours) 데이터셋으로 한다. 본 연구는 그동안 잘 이뤄지지 않았던 콘포머와 퓨전피쳐를 사용해 노인 음성 인식을 위한 딥러닝 모델을 제시하였다는데 큰 의미가 있다. 또한 콘포머 모델보다 높은 수준의 정확도를 보임으로써 노인 음성 인식을 위한 딥러닝 모델 연구에 기여했다.
Hyunsun Hwang;Changki Lee;Wooyoung Go;Myungchul Kang
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.622-626
/
2023
중첩 개체명 인식(Nested Named Entity Recognition)은 하나의 개체명 표현 안에 다른 개체명 표현이 들어 있는 중첩 구조의 개체명을 인식하는 작업으로, 중첩 개체명 인식을 위한 학습데이터 구축 작업은 일반 개체명 인식 학습데이터 구축보다 어렵다는 문제가 있다. 본 논문에서는 이러한 문제를 해결하기 위해 Few-shot Learning 환경에 강건한 중첩 개체명 인식 모델을 제안한다. 이를 위해, 기존의 Biaffine 중첩 개체명 인식 모델의 출력 레이어를 라벨 의미 정보를 활용하도록 변경하여 학습데이터가 적은 환경에서 중첩 개체명 인식의 성능을 향상시키도록 하였다. 실험 결과 GENIA 중첩 개체명 인식 데이터의 5-shot, 10-shot, 20-shot 환경에서 기존의 Biaffine 모델보다 평균 10%p이상의 높은 F1-measure 성능을 보였다.
In vocabulary recognition systems based on HMM(Hidden Markov Model)s, training process unseen model bring on show a low recognition rate. If recognition vocabulary modify and make an addition then recreated modeling of executed database collected and training sequence on account of bring on additional expenses and take more time. This study suggest efficient context dependent process modeling method using decision tree-based state tying. On study suggest method is reduce recreated of model and it's offered that robustness and accuracy of context dependent acoustic modeling. Also reduce amount of model and offered training process unseen model as concerns context dependent a likely phoneme model has been used unseen model solve the matter. System performance as a result of represent vocabulary dependence recognition rate of 98.01%, vocabulary independence recognition rate of 97.38%.
Kim, Byeong-Jae;Park, Chan-min;Choi, Yoon-Young;Kwon, Myeong-Joon;Seo, Jeong-Yeon
한국어정보학회:학술대회논문집
/
2017.10a
/
pp.333-337
/
2017
본 논문에서는 개체명 인식과 언어 모델의 다중 학습을 이용한 한국어 개체명 인식 방법을 제안한다. 다중 학습은 1 개의 모델에서 2 개 이상의 작업을 동시에 분석하여 성능 향상을 기대할 수 있는 방법이지만, 이를 적용하기 위해서 말뭉치에 각 작업에 해당하는 태그가 부착되어야 하는 문제가 있다. 본 논문에서는 추가적인 태그 부착 없이 정보를 획득할 수 있는 언어 모델을 개체명 인식 작업과 결합하여 성능 향상을 이루고자 한다. 또한 단순한 형태소 입력의 한계를 극복하기 위해 입력 표상을 자소 및 형태소 품사의 임베딩으로 확장하였다. 기계 학습 방법은 순차적 레이블링에서 높은 성능을 제공하는 Bi-directional LSTM CRF 모델을 사용하였고, 실험 결과 언어 모델이 개체명 인식의 오류를 효과적으로 개선함을 확인하였다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2004.04a
/
pp.381-384
/
2004
본 논문에서는 변조 함수법을 이용하여 비선형 연속시스템의 퍼지모델 파라미터 인식을 위한 새로운 알고리즘을 제시하였다. 동력학 미분방정식은 미분항을 가지고 있기 때문에 입출력 데이터를 이용하여 퍼지모델 파라미터를 인식하는 경우 외란의 영향을 무시할 수 없으므로 퍼지모델 파라미터 인식이 어렵다. 그러나 변조 함수법을 이용하면 미분항을 소거할 수 있어 미분항이 없는 연립방정식으로부터 쉽게 퍼지모델 파라미터 인식이 가능하다 몇 개의 시뮬레이션을 통해 제안한 변조 함수법을 이용한 퍼지모델 파라미터 인식의 정확성과 유효성을 확인할 수 있었다.
음성 인식 및 온라인 필기 인식기 모델로 널리 알려진 은닉 마르코프 모델(HMM)을 오프라인에 적용하려는 시도는 있었지만 아직까지 만족할 만한 성과는 찾아보기 어렵고 인식률도 신경망 등 다른 방법에 의한 시스템에 미치지 못하는 실정이다. 본 연구에서는 온라인 필기 모델 HMM을 오프라인 필기인식에 활용하는 방법 한 가지와 순수하게 오프라인 필기 모델로서 제안된 2D HMM을 기술한다. 두 방법 모두 기존의 HMM 모델링 틀에 기초를 두고 개발하였으며 다양한 국소 변형을 해석하기 위해 동적 계획법에 기반한 알고리즘을 응용하였다. 본 논문에서는 두 가지 독립적인 아이디어 제안에 의의를 두었으며 주요 아이디어만을 간략하게 기술하였다.
Proceedings of the Acoustical Society of Korea Conference
/
1998.08a
/
pp.74-77
/
1998
우리는 C++를 이용하여 음성인식기를 구현하여 기존의 C를 이용한 경우에 비하여 30% 수준의 소스로 표현하였고 인식기의 공동개발, 확장 및 개선, 기술 전수 등이 용이하게 되었으며 이를 음성인식 엔진 및 음성인식 연구를 위한 툴로 사용할 수 있게 되었다. 이 인식기의 특징으로는 연속 음성 및 대화체 음성을 인식할 수 있으며 trigram 언어 모델을 사용하였고 문맥 종속 음소 모델링에서는 기존의 triphone 보다 넓은 문맥을 고려한 n-phone context modeling을 사용하였으며 모델의 선정에는 음성학적 지식을 기반으로 한 질문을 사용한 decision tree를 사용하여 훈련에 나타나지 않은 단어나 문맥인 경우라도 가장 가까운 모델을 선정할 수 있게 하였다. 또, tree lexicon을 사용하여 속도를 개선하였으며 state 단위의 모델 공유를 통해 제한된 데이터를 이용하여 더 많은 모델을 훈련할 수 있어 성능을 개선하였다. 상용화를 염두에 두고 pc에서 구현하였다.
Annual Conference on Human and Language Technology
/
2006.10e
/
pp.171-176
/
2006
본 논문에서는 n-best 리랭킹을 이용한 한-영 통계적 음성 번역 시스템에 대해 논하고 있다. 보통의 음성 번역 시스템은 음성 인식 시스템, 자동 번역 시스템, 음성 합성 시스템이 순차적으로 결합되어 있다. 하지만 본 시스템은 음성 인식 오류에 보다 강인한 시스템을 만들기 위해 음성 인식 시스템으로부터 n-best 인식 문장을 추출하여 번역 결과와 함께 리랭킹의 과정을 거친다. 자동 번역 시스템으로 구절기반 통계적 자동 번역 모델을 사용하여, 음성 인식기의 발음 모델에서 기본 단어 단위와 맞추어 번역 모델과 언어 모델을 훈련시킴으로써 음성 번역 시스템에서 형태소 분석기를 제거할 수 있다. 또한 음성 인식 시스템에서 상황 별로 언어 모델을 분리하여 처리함으로써 자동 번역 시스템에 비해 부족한 음성 인식 시스템의 처리 범위를 보완할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.