• Title/Summary/Keyword: 인식의 오류

Search Result 924, Processing Time 0.026 seconds

Automatic Generation of Training Data for Korean Speech Recognition Post-Processor (한국어 음성인식 후처리기를 위한 학습 데이터 자동 생성 방안)

  • Seonmin Koo;Chanjun Park;Hyeonseok Moon;Jaehyung Seo;Sugyeong Eo;Yuna Hur;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.465-469
    • /
    • 2022
  • 자동 음성 인식 (Automatic Speech Recognition) 기술이 발달함에 따라 자동 음성 인식 시스템의 성능을 높이기 위한 방법 중 하나로 자동 후처리기 연구(automatic post-processor)가 진행되어 왔다. 후처리기를 훈련시키기 위해서는 오류 유형이 포함되어 있는 병렬 말뭉치가 필요하다. 이를 만드는 간단한 방법 중 하나는 정답 문장에 오류를 삽입하여 오류 문장을 생성하여 pseudo 병렬 말뭉치를 만드는 것이다. 하지만 이는 실제적인 오류가 아닐 가능성이 존재한다. 이를 완화시키기 위하여 Back TranScription (BTS)을 이용하여 후처리기 모델 훈련을 위한 병렬 말뭉치를 생성하는 방법론이 존재한다. 그러나 해당 방법론으로 생성 할 경우 노이즈가 적을 수 있다는 관점이 존재하다. 이에 본 연구에서는 BTS 방법론과 인위적으로 노이즈 강도를 추가한 방법론 간의 성능을 비교한다. 이를 통해 BTS의 정량적 성능이 가장 높은 것을 확인했을 뿐만 아니라 정성적 분석을 통해 BTS 방법론을 활용하였을 때 실제 음성 인식 상황에서 발생할 수 있는 실제적인 오류를 더 많이 포함하여 병렬 말뭉치를 생성할 수 있음을 보여준다.

  • PDF

Performance Improvement of korean Connected Digit Recognition Based on Acoustic Parameters (음향학적 파라메터를 이용한 한국어 연결숫자인식의 성능개선)

  • Kim Seunghi;Kim Hyung Soon
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.44-47
    • /
    • 1999
  • 본 논문에서는 한국어 연결숫자인식에 있어서 모델간의 변별력 향상을 통해 인식률을 높이기 위하여 음향학적 파라메터(Acousticparameter)를 사용하는 짓을 제안한다. 제안된 방법은 음성학적 지식에 근거하여 적절한 주파수 대역별 에너지의 비의 로그값을 추가적인 특징파라메터로 사용한다. 실험결과, 제안된 방법을 사용함으로써 기본 인식시스템에 비해 오류율이 최고 $46\%$ 정도 감소됨을 확인할 수 있었다. 그리고 채널보상 기술을 함께 적용함으로써 $69\%$ 정도의 오류율 감소를 얻었다.

  • PDF

Phoneme Similarity Error Correction System using Bhattacharyya Distance Measurement Method (바타챠랴 거리 측정법을 이용한 음소 유사율 오류 보정 개선 시스템)

  • Ahn, Chan-Shik;Oh, Sang-Yeob
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.6
    • /
    • pp.73-80
    • /
    • 2010
  • Vocabulary recognition system is providing inaccurate vocabulary and similar phoneme recognition due to reduce recognition rate. It's require method of similar phoneme recognition unrecognized and efficient feature extraction process. Therefore in this paper propose phoneme likelihood error correction improvement system using based on phoneme feature Bhattacharyya distance measurement. Phoneme likelihood is monophone training data phoneme using HMM feature extraction method, similar phoneme is induced recognition able to accurate phoneme using Bhattacharyya distance measurement. They are effective recognition rate improvement. System performance comparison as a result of recognition improve represent 1.2%, 97.91% by Euclidean distance measurement and dynamic time warping(DTW) system.

사용자 인식도 조사 분석을 통한 전자해도시스템 개선에 관한 연구

  • Jeong, Min
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.06a
    • /
    • pp.141-143
    • /
    • 2014
  • 전자해도시스템은 2012년 7월 1일 부로 국제항해에 종사하는 선박에 단계별로 설치가 강제화 되었다. 전자해도시스템은 백업장치를 갖춘다면 종이해도를 대체하여 사용할 수 있는 설비로 선교에서 사용의존도가 높은 핵심항해설비라고 할 수 있다. 현재 전자해도 시스템 이용 시 전 세계적으로 다양한 오류가 발생하고 있으며, 국제해사기구에서도 문제를 인식하고 오류해결을 위한 방안을 모색하고 있는 중이다. 본 논문에서는 사용자들을 대상으로 전자해도시스템의 기능 이용 시의 오류 및 문제점에 대한 사항을 설문을 통해 조사 분석하고 기능에 대한 개선사항에 대하여 연구하였다.

  • PDF

User Adjustment Post-Process Using Neural Network In Isolated Word Speech Recognition (고립단어 음성인식에서 신경망을 이용한 사용자 적응형 후처리)

  • Kim, Young-Jin;Kim, Eun-Ju;Kim, Myoung-Won
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.736-738
    • /
    • 2005
  • 최근 PDA나 PMP와 같은 개인용 모바일 기기의 인터페이스 개발로써 잡음환경에 강인한 음성인식 기술들이 연구되고 있으며 이러한 방법으로 오류패턴, 순차패턴, 의미정보, 문맥정보와 같이 인식기에 독립적인 정보를 이용하거나 영상 정보와 같이 언어와 성격이 다른 이질적인 정보를 이용하여 후처리를 하는 연구들이 진행되어 왔다. 그러나 인식기와 독립적인 정보로 후처리를 하는 방법들의 인식률은 인식기의 사전 인식률이 주변 잡음에 의해 떨어질 경우 후처리 인식률도 같이 떨어지는 현상이 벌어진다. 따라서 본 논문에서는 주변 잡음으로 인한 인식기의 사전 인식률에 저하를 줄이는 방법으로 사용자 적응형 후처리를 제안한다. 사용자 적응형 후처리에 사용되는 데이터는 사용자의 발화에 대한 인식기의 출력 값들이며, 출력 값들은 화자독립모델에 의해 계산되는 각 단어들의 유사도 들이다. 따라서 화자독립모델의 결과를 사용자 적응형 후처리에 적용한 결과 인식기의 오류를 $58.7\%$ 줄일 수 있었다.

  • PDF

Performance Improvement in Speech Recognition by Weighting HMM Likelihood (은닉 마코프 모델 확률 보정을 이용한 음성 인식 성능 향상)

  • 권태희;고한석
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.145-152
    • /
    • 2003
  • In this paper, assuming that the score of speech utterance is the product of HMM log likelihood and HMM weight, we propose a new method that HMM weights are adapted iteratively like the general MCE training. The proposed method adjusts HMM weights for better performance using delta coefficient defined in terms of misclassification measure. Therefore, the parameter estimation and the Viterbi algorithms of conventional 1:.um can be easily applied to the proposed model by constraining the sum of HMM weights to the number of HMMs in an HMM set. Comparing with the general segmental MCE training approach, computing time decreases by reducing the number of parameters to estimate and avoiding gradient calculation through the optimal state sequence. To evaluate the performance of HMM-based speech recognizer by weighting HMM likelihood, we perform Korean isolated digit recognition experiments. The experimental results show better performance than the MCE algorithm with state weighting.

Recognition and Completion of Incomplete Inputs (불완전 입력문장의 인식과 완성)

  • Cho, Yong-Yoon;Park, Yong-Kwan;Park, Ho-Byung;Kim, Sang-Heon;Yoo, Chae-Woo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.05b
    • /
    • pp.963-966
    • /
    • 2003
  • 에디터 환경에서 사용자가 문법적으로 불완전한 문장을 입력하면, 에디터는 오류를 발견하고 적절한 오류 처리 루틴을 실행하게 된다. 대부분의 에디터는 에러를 발견하면 에러 발생 여부를 사용자에게 알리고, 에러 위치를 하이라이트 시켜 사용자가 오류를 수정할 수 있도록 해준다. 에디터 환경에서의 사용자 입력은 입력 부분의 왼쪽, 오른쪽에서 완전하지 못한 형태로 입력될 수 있다. 그러나, 기존 오류 처리 방법은 불완전한 문장에 대해 에러 처리만을 통보할 뿐 계속적인 파싱을 보장하지 못한다. 본 논문은 파서가 문법적으로 불완전한 입력 문장을 해당 문법에 따라 올바로 인식하고, 누락된 문법 심벌을 찾아 파스 트리의 부족한 부분을 완성함으로써 계속적인 파싱을 보장할 수 있는 파싱 방법을 제안한다. 제안된 방법을 통해 사용자는 입력의 문법 오류에 대한 부담을 줄일 수 있고, 불완전한 입력에 대한 계속적인 파싱을 보증 받을 수 있어 파싱 효율을 높일 수 있다.

  • PDF

Post-processing of Hangul Recognition for Discriminating Pairs of Characters (유사 문자쌍을 구분하기 위한 한글 인식의 후처리)

  • Jang, Seung-Ick;Kim, Jin-Hyung
    • Annual Conference on Human and Language Technology
    • /
    • 2001.10d
    • /
    • pp.388-393
    • /
    • 2001
  • 유사한 형태의 필기 한글 문자쌍은 한글 인식 시 발생하는 오류의 많은 부분을 차지한다. 이는 유사한 문자들의 작은 차이를 인식기가 충분히 반영하기 어렵기 때문이다. 본 논문에서는 최근 주목 받고 있는 Support Vector Machine을 이용해 유사한 문자쌍을 검증하는 한글 인식 후처리 방법을 제안한다. 제안하는 방법은, 대부분의 문자 유사쌍이 한 두개의 자모만이 상이한 점에 착안하여 자모 단위로 문자 유사쌍을 구분한다. 기존 랜덤그래프를 이용한 한글 인식기를 이용하여 자모 분할을 수행하고, Support Vector Machine을 이용하여 분할된 결과를 검증한다. 제안한 방법은 유사쌍 구분에 중요한 자모만을 선택적으로 고려하여, 기존 한글 인식기의 부족한 점을 보완한다. 실험 결과, 자주 혼동되는 문자쌍들의 인식 오류가 정정되는 것을 볼 수 있었으며 그에 따라 한글 인식의 전체 성능이 향상되었다.

  • PDF

Using Naïve Bayes Classifier and Confusion Matrix Spelling Correction in OCR (나이브 베이즈 분류기와 혼동 행렬을 이용한 OCR에서의 철자 교정)

  • Noh, Kyung-Mok;Kim, Chang-Hyun;Cheon, Min-Ah;Kim, Jae-Hoon
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.310-312
    • /
    • 2016
  • OCR(Optical Character Recognition)의 오류를 줄이기 위해 본 논문에서는 교정 어휘 쌍의 혼동 행렬(confusion matrix)과 나이브 베이즈 분류기($na{\ddot{i}}ve$ Bayes classifier)를 이용한 철자 교정 시스템을 제안한다. 본 시스템에서는 철자 오류 중 한글에 대한 철자 오류만을 교정하였다. 실험에 사용된 말뭉치는 한국어 원시 말뭉치와 OCR 출력 말뭉치, OCR 정답 말뭉치이다. 한국어 원시 말뭉치로부터 자소 단위의 언어모델(language model)과 교정 후보 검색을 위한 접두사 말뭉치를 구축했고, OCR 출력 말뭉치와 OCR 정답 말뭉치로부터 교정 어휘 쌍을 추출하고, 자소 단위로 분해하여 혼동 행렬을 만들고, 이를 이용하여 오류 모델(error model)을 구축했다. 접두사 말뭉치를 이용해서 교정 후보를 찾고 나이브 베이즈 분류기를 통해 확률이 높은 교정 후보 n개를 제시하였다. 후보 n개 내에 정답 어절이 있다면 교정을 성공하였다고 판단했고, 그 결과 약 97.73%의 인식률을 가지는 OCR에서, 3개의 교정 후보를 제시하였을 때, 약 0.28% 향상된 98.01%의 인식률을 보였다. 이는 한글에 대한 오류를 교정했을 때이며, 향후 특수 문자와 숫자 등을 복합적으로 처리하여 교정을 시도한다면 더 나은 결과를 보여줄 것이라 기대한다.

  • PDF

Using Naïve Bayes Classifier and Confusion Matrix Spelling Correction in OCR (나이브 베이즈 분류기와 혼동 행렬을 이용한 OCR에서의 철자 교정)

  • Noh, Kyung-Mok;Kim, Chang-Hyun;Cheon, Min-Ah;Kim, Jae-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.310-312
    • /
    • 2016
  • OCR(Optical Character Recognition)의 오류를 줄이기 위해 본 논문에서는 교정 어휘 쌍의 혼동 행렬(confusion matrix)과 나이브 베이즈 분류기($na{\ddot{i}}ve$ Bayes classifier)를 이용한 철자 교정 시스템을 제안한다. 본 시스템에서는 철자 오류 중 한글에 대한 철자 오류만을 교정하였다. 실험에 사용된 말뭉치는 한국어 원시 말뭉치와 OCR 출력 말뭉치, OCR 정답 말뭉치이다. 한국어 원시 말뭉치로부터 자소 단위의 언어 모델(language model)과 교정 후보 검색을 위한 접두사 말뭉치를 구축했고, OCR 출력 말뭉치와 OCR 정답 말뭉치로부터 교정 어휘 쌍을 추출하고, 자소 단위로 분해하여 혼동 행렬을 만들고, 이를 이용하여 오류 모델(error model)을 구축했다. 접두사 말뭉치를 이용해서 교정 후보를 찾고 나이브 베이즈 분류기를 통해 확률이 높은 교정 후보 n개를 제시하였다. 후보 n개 내에 정답 어절이 있다면 교정을 성공하였다고 판단했고, 그 결과 약 97.73%의 인식률을 가지는 OCR에서, 3개의 교정 후보를 제시하였을 때, 약 0.28% 향상된 98.01%의 인식률을 보였다. 이는 한글에 대한 오류를 교정했을 때이며, 향후 특수 문자와 숫자 등을 복합적으로 처리하여 교정을 시도한다면 더 나은 결과를 보여줄 것이라 기대한다.

  • PDF