• 제목/요약/키워드: 인식된 유사함

검색결과 1,767건 처리시간 0.023초

관측 시점에 강인한 손 모양 인식을 위한 손 모양과 손 구조 사이의 학습 기반 유사도 결정 방법 (Learning Similarity between Hand-posture and Structure for View-invariant Hand-posture Recognition)

  • 장효영;정진우;변증남
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 춘계학술대회 학술발표 논문집 제16권 제1호
    • /
    • pp.187-191
    • /
    • 2006
  • 본 논문에서는 비전 기술에 기반을 둔 손 모양 인식 시스템의 성능 향상을 위해 학습을 통해 손 모양과 손 구조 간 유사도를 결정하는 방법을 제안한다. 비전 센서에 기반을 둔 손 모양 인식은 손의 높은 자유도로 인한 자체 가림 현상과 관찰 방향 변화에 따른 입력 영상의 다양함으로 인해 인식에 어려움이 따른다. 따라서 비전 기반 손 모양 인식의 경우, 카메라와 손 간의 상대적인 각도에 제한을 두거나 여러 대의 카메라를 배치하는 것이 일반적이다. 그러나 카메라와 손 간의 상대적 각도에 제한을 두는 경우에는 사용자의 움직임에 제약이 따르게 되며, 여러 대의 카메라를 사용할 경우에는 각 입력된 영상에 대한 인식 결과를 최종 인식 결과에 반영하는 방식에 대해서 추가적으로 고려해야 한다. 본 논문에서는 비전 기반 손 모양 인식의 이러한 문제점을 개선하기 위하여 인식의 과정에서 사용되는 손 모양 특징을 손 구조적인 각도 정보와 손 영상 특징으로 나누고, 학습을 통해 각 특징 간 연관성을 정의한다.

  • PDF

유사단어 정보와 유전자 알고리듬을 이용한 HMM의 상태하중값을 사용한 단어의 검증 (Word Verification using Similar Word Information and State-Weights of HMM using Genetic Algorithmin)

  • 김광태;백창흠;홍재근
    • 대한전자공학회논문지SP
    • /
    • 제38권1호
    • /
    • pp.97-103
    • /
    • 2001
  • 현재 HMM은 음성인식에서 가장 널리 쓰이는 방법이다. 대부분의 경우 HMM의 매개변수는 훈련데이터에 대해 최대유사도를 가지도록 훈련된다. 그러나 이러한 방법은 다른 단어들에 대한 변별력을 고려하지 않는 단점이 있다. 이 논문에서는 이러한 단점을 보완하기 위해, 유사단어에 대한 정보와 두 단어 사이에 변별력을 가지는 함수를 사용하여, 인식된 단어와 유사단어만을 대상으로 재인식하는 과정을 통해 단어를 검증하는 방법을 제안하였다. 유사단어는 각 단어의 HMM에 다른 단어의 훈련음성으로 확률값을 계산하여 가장 유사한 단어를 얻었으며, 단어간에 변별력을 가지는 인식기는 각 상태에 하중값을 가지는 인식기를 사용하여 구현하였다. 단어간에 변별력을 가지는 하중값은 유전자 알고리듬을 사용하여 얻었다. 실험에서 유사단어와 변별력을 가지는 검증기의 사용으로 오인식률이 약 22% 감소하였다.

  • PDF

균등화 및 분류기에 따른 다중 생체 인식 시스템의 성능 평가 (Performance Evaluation of Multimodal Biometric System for Normalization Methods and Classifiers)

  • 고현주;우나영;신용녀;김재성;김학일;전명근
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권4호
    • /
    • pp.377-388
    • /
    • 2007
  • 본 연구는 다중 생체 인식 기법을 이용하여 개인 확인 및 인증을 구현한 것으로, 단일생체인식 에서 많이 사용되어 지고 있는 생체 정보 중 얼굴과 지문, 홍채를 이용하여 상호 비교하고 구현하였다. 이를 위한 결합방식으로 단일 생체인식에서 얻은 유사도를 이용하는 방식인 유사도 단계에서의 결합방식을 적용하였으며, 이때의 각 유사도가 동일한 범위가 되도록 하는 여러 가지 균등화 방법에 대하여 연구하였다. 결합방법으로는 가중치 합, Support Vector Machine, Fisher 분류기, 베이시안 분류기를 사용하여 비교하였다. 다양한 실험결과, 사용되는 다중생체인식 조합에 따라 우수한 성능을 보이는 균등화 방법 및 분류기가 다르게 나타남을 알 수 있었다.

음성인식 후처리에서 음소 유사율을 이용한 오류보정에 관한 연구 (A Study on Error Correction Using Phoneme Similarity in Post-Processing of Speech Recognition)

  • 한동조;최기호
    • 한국ITS학회 논문지
    • /
    • 제6권3호
    • /
    • pp.77-86
    • /
    • 2007
  • 최근 텔레매틱스 단말기 등과 같이 음성인식을 인터페이스로 하는 음성기반 검색시스템들이 많이 개발되고 있다. 그러나 음성인식에는 여전히 많은 오류가 존재하며, 이에 오류보정에 대한 여러 가지 연구가 진행되고 있다. 본 논문에서는 한국어의 음소가 갖는 특징을 기반으로 음성인식 후처리에서의 오류보정을 제안하였다. 이를 위해 한국어 음소의 특징을 고려한 음소 유사율을 사용하였다. 음소 유사율은 훈련데이터를 모노폰으로 훈련시켜 한국어 음소 각각에 대하여 MFCC와 LPC 특징추출방법을 사용하여 특징추출을 수행하고, 바타차랴 거리 측정법을 사용하여 각 음소 사이의 유사율을 구하였다. 음소 유사율과 신뢰도를 이용하여 오류보정률을 구하였으며, 이를 사용하여 음성인식 과정에서 오류로 판명된 어절에 대하여 오류보정을 수행하고, 음절 복원과 형태소 분석을 재수행하는 과정을 거쳤다. 실험 결과 MFCC와 LPC 각각 7.5%와 5.3%의 인식 향상률을 보였다.

  • PDF

AAM과 가버 특징 벡터를 이용한 강인한 얼굴 인식 시스템 (Robust Face Recognition System using AAM and Gabor Feature Vectors)

  • 김상훈;정수환;전승선;김재민;조성원;정선태
    • 한국콘텐츠학회논문지
    • /
    • 제7권2호
    • /
    • pp.1-10
    • /
    • 2007
  • 본 논문에서는 AAM(Active Appearance Model)과 가버 특징 벡터를 이용한 얼굴 인식 시스템을 제안한다. 가버 특징 벡터를 사용하는 대표적인 얼굴 인식 알고리즘인 EBGM(Elastic Bunch Graph Matching)은 가버 특징 벡터를 추출하기 위해 얼굴 특징점들의 검출을 필요로 한다. 그런데, EBGM에서 사용되는 얼굴 특징점 검출 방법은 가버젯 유사도에 기반하는데 이는 초기점에 민감하다. 잘못된 특징점 검출은 얼굴 인식에 영향을 미친다. AAM은 얼굴 특징점 검출에 효과적인 것으로 알려져 있다. 본 논문에서는 AAM으로 얼굴 특징점들을 대략적으로 추정하고 추정된 특징점들을 초기점으로 하여 가버젯 유사도 기반 특징점 검출방법으로 특징점 검출을 정교화하는 얼굴 특징점 검출 방법과 이에 기반한 얼굴 인식 시스템을 제안한다. 실험을 통해 제안된 특징점 검출 방법을 사용한 얼굴 인식 시스템이 EBGM과 같이 기존 가버젯 유사도만의 얼굴 특징점 검출을 이용한 얼굴 인식 시스템보다 더 나은 성능 개선을 보임을 실험을 통해 확인하였다.

모듈라 신경망에 기반한 번호판 인식시스템의 특징벡터 클러스터링 방법에 따른 성능평가 (Performance Evaluation of Clustering Methods of Feature Vectors in Vehicle Plate Recognition Systems based on Modular Neural Network)

  • 박창석;김병만;서병훈;이광호
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (B)
    • /
    • pp.313-315
    • /
    • 2003
  • 분할 및 합병 개념에 바탕을 둔 모듈라 신경망이 자동차 번호판 문자 인식에서 단일 신경망 사용 보다 학습 질 측면이나 학습 속도 면에서 좋은 결과를 보였다. 본 논문에서는 번호판 인식을 위한 모듈라 신경망 구성 시, 특징 벡터 클러스터링 방법에 따른 모듈라 신경망의 성능을 평가하였다. K-means Clustering 알고리즘을 이용하여 유사한 특징 벡터를 그룹핑하는 방법과 본 논문에서 제안한 알고리즘을 사용하여 유사하지 않는 특징 벡터들을 그룹핑하는 방법 각각을 구현하여 실험하였다. 실험결과, 유사하지 않는 특징 벡터들로 모듈라 신경망을 구성할 경우가 그렇지 않은 경우보다 좋은 인식 결과를 보였다.

  • PDF

유사도 기반 얼굴인식 시스템 성능 향상 연구 (A study on improving the performance of face recognition system based on similarity)

  • 나성원;이상훈;윤경로
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2021년도 하계학술대회
    • /
    • pp.315-317
    • /
    • 2021
  • 최근 팬데믹으로 인해 다양한 산업에서 온라인화가 빠르게 진행되고 있다. 이러한 흐름에 따라 생체 신호를 이용한 로그인 시스템이나 자동 출결관리 시스템의 개발 또한 활발하게 연구되고 있다. 이에 본 논문에서는 생체 정보 중 얼굴을 이용하여 산업에서 도입 가능한 수준까지 얼굴인식 시스템의 성능을 향상 시키고자 한다. 우리는 성능향상을 위해 먼저 얼굴인식 시스템에서 성능 저하원인인 영상 속 얼굴 위치 및 각도 변화를 해결하고자 정면 얼굴 Capture 방법을 제안하였다. 두 번째로는 FRR 오류가 발생하면 추가적으로 정면얼굴을 추출하여 개인 인증을 다시 시도방법을 제안하였다. 검증을 위해 얼굴인식 분야에서 가장 많이 사용되고 있는 유사도 기반 프레임워크를 구현하여 제안한 성능향상 방법을 적용, 실험 하였으며 420명의 Database를 구축하고 2주 동안 99개의 비디오 데이터를 수집하여 실제 산업에서 도입 가능한 환경과 유사하게 구축해 우리의 제안 방법을 테스트 및 검증하였다.

  • PDF

가중치 패턴 클러스터를 이용한 한글 문자 인식 (The Recognition of The Korean Characters Using The Weighted Pattern Cluster)

  • 김도형;이선화;차의영
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (2)
    • /
    • pp.319-321
    • /
    • 2001
  • 본 논문에서는 스캐너로 입력된 한글 문서 영상에서 한글 문자를 인식하는 방법을 제시한다. 입력된 한글 문자를 한글의 구조적 특징에 따라 6개의 유형으로 분리하고, 각 유형에서의 모음의 형태학적 특징에 근거하여 모음을 인식한다. 각 유형에서의 자음의 인식을 위해서 가중치 패턴 클러스터를 생성하고 생성된 클러스터와 원영상간의 유사도 측정을 통해 자음을 인식하게 된다. 오인식 가능성이 있는 자음은 오인식 교정을 위한 세부 유사도 매칭과정을 통해 최종적으로 인식된다. 제안하는 알고리즘을 바탕으로 실험한 결과 스캐너로 입력받은 상용 한글 문자 14,983자에 대해 최종 95.68%의 인식률을 보였으며, 차후 정형화된 한글 문서 인식 시스템에 응용될 수 있을 것이다.

  • PDF

실시간 문맥독립 화자인식 시스템의 성능향상을 위한 수정된 가중모델순위 결정방법 (Modified Weighting Model Rank Method for Improving the Performance of Real-Time Text-Independent Speaker Recognition System)

  • 김민정;오세진;석수영;정호열;정현열
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2002년도 하계학술발표대회 논문집 제21권 1호
    • /
    • pp.107-110
    • /
    • 2002
  • 현재까지 개발된 화자식별 시스템 중 가중모델순위(Weighting Model Rank; WMR)방법을 이용한 화자인식 시스템이 비교적 높은 인식성능을 나타내고 있다. WMR 방법은 각 화자에 대한 프레임 유사도의 순위에 따라 지수함수 가중치로 대치시키는 방법을 사용하고 있으나, 이 방법은 유사도 본래의 변별력이 전체 계산에서 고려되지 않는 문제가 있었다. 이를 해결하기 위해 본 논문에서는 각 화자의 프레임 유사도와 지수함수를 이용한 가중치를 곱한 값을 이용하여 전체 스코어를 계산하도록 하는 수정된 가중모델 순위방법(Modified Weighting Model Rank; MWMR)을 제안한다. 제안한 방법의 유효성을 확인하기 위하여 316명의 화자를 대상으로 하여 인식실험을 실시한 결과, 학습 프레임이 10,000일 경우, MWMR 방법에서 $98.1\%$의 화자 인식률을 얻어 WMR 방법에 비해 약 $2.0\%$의 향상된 인식결과를 보여 제안한 방법의 유효성을 확인할 수 있었다.

  • PDF

퍼지패턴매칭에 의한 음성인식에 관한 연구 (A Study on Speech Recognition Using Fuzzy Pattern Matching)

  • 이기영
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1991년도 학술발표회 논문집
    • /
    • pp.3-6
    • /
    • 1991
  • 본 연구에서는 음성의 패턴작성법을 개선하고 음성인식율을 향상시키기 위하여 퍼지패턴매칭을 개선한 뉴럴퍼지패턴매칭에(a neural-fuzzy pattern matching)의해 특정화자 고립단어인식을 수행하였다. 이 방법에서는 신경회로망의 연상기억에 의한 사상에 의해 패턴을 작성하여 주파수변동을 흡수하고 표준패턴고 선형매칭에 의해 유사도를 측정하여 인식하므로써 시간변동의 문제를 보완하였다. 또한, 이 방법에서 사용하는 특징피라미터는 2진화 스펙트럽이며, 유사도는 논리연산에 의해 측정되기 때문에 종래의 왜곡척도를 이용한 DTW 방법에 비해 기억용량과 계산량이 매우 작다. 이 방법의 인식성능을 평가하기 위하여 남녀가 발성한 28개의 도시명을 대상으로 인식실험을 수행한 결과, 신경회로망을 이용하지 않은 퍼지패턴매칭보다 오인식을 감소시켰으며, 뉴럴-퍼지 패턴매칭에 의한 특정화자 고립단어인식의 우수성을 확인하였다.

  • PDF