• Title/Summary/Keyword: 인식된 유사함

Search Result 1,767, Processing Time 0.029 seconds

Post-processing of Hangul Recognition for Discriminating Pairs of Characters (유사 문자쌍을 구분하기 위한 한글 인식의 후처리)

  • Jang, Seung-Ick;Kim, Jin-Hyung
    • Annual Conference on Human and Language Technology
    • /
    • 2001.10d
    • /
    • pp.388-393
    • /
    • 2001
  • 유사한 형태의 필기 한글 문자쌍은 한글 인식 시 발생하는 오류의 많은 부분을 차지한다. 이는 유사한 문자들의 작은 차이를 인식기가 충분히 반영하기 어렵기 때문이다. 본 논문에서는 최근 주목 받고 있는 Support Vector Machine을 이용해 유사한 문자쌍을 검증하는 한글 인식 후처리 방법을 제안한다. 제안하는 방법은, 대부분의 문자 유사쌍이 한 두개의 자모만이 상이한 점에 착안하여 자모 단위로 문자 유사쌍을 구분한다. 기존 랜덤그래프를 이용한 한글 인식기를 이용하여 자모 분할을 수행하고, Support Vector Machine을 이용하여 분할된 결과를 검증한다. 제안한 방법은 유사쌍 구분에 중요한 자모만을 선택적으로 고려하여, 기존 한글 인식기의 부족한 점을 보완한다. 실험 결과, 자주 혼동되는 문자쌍들의 인식 오류가 정정되는 것을 볼 수 있었으며 그에 따라 한글 인식의 전체 성능이 향상되었다.

  • PDF

Improving A Text Independent Speaker Identification System By Frame Level Likelihood Normalization (프레임단위유사도정규화를 이용한 문맥독립화자식별시스템의 성능 향상)

  • 김민정;석수영;정현열;정호열
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.487-490
    • /
    • 2001
  • 본 논문에서는 기존의 Caussian Mixture Model을 이용한 실시간문맥독립화자인식시스템의 성능을 향상시키기 위하여 화자검증시스템에서 좋은 결과를 나타내는 유사도정규화 ( Likelihood Normalization )방법을 화자식별시스템에 적용하여 시스템을 구현하였으며, 인식실험한 결과에 대해 보고한다. 시스템은 화자모델생성단과 화자식별단으로 구성하였으며, 화자모델생성단에서는, 화자발성의 음향학적 특징을 잘 표현할 수 있는 GMM(Gaussian Mixture Model)을 이용하여 화자모델을 작성하였으며. GMM의 파라미터를 최적화하기 위하여 MLE(Maximum Likelihood Estimation)방법을 사용하였다. 화자식별단에서는 학습된 데이터와 테스트용 데이터로부터 ML(Maximum Likelihood)을 이용하여 프레임단위로 유사도를 계산하였다. 계산된 유사도는 유사도 정규화 과정을 거쳐 스코어( SC)로 표현하였으며, 가장 높은 스코어를 가지는 화자를 인식화자로 결정한다. 화자인식에서 발성의 종류로는 문맥독립 문장을 사용하였다. 인식실험을 위해서는 ETRI445 DB와 KLE452 DB를 사용하였으며. 특징파라미터로서는 켑스트럼계수 및 회귀계수값만을 사용하였다. 인식실험에서는 등록화자의 수를 달리하여 일반적인 화자식별방법과 프레임단위유사도정규화방법으로 각각 인식실험을 하였다. 인식실험결과, 프레임단위유사도정규화방법이 인식화자수가 많아지는 경우에 일반적인 방법보다 향상된 인식률을 얻을수 있었다.

  • PDF

A Search Method of Similar XML Documents based on Bitmap Indexing (비트맵 인덱싱 기반 유사한 XML 문서 검색 기법)

  • Lee, Jae-Min;Hwang, Byung-Yeon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.05a
    • /
    • pp.15-18
    • /
    • 2004
  • XML 검색을 위한 기존의 비트맵 인덱싱은 XML을 문서, 경로, 단어로 구성된 3차원 비트맵 인덱스에 매핑하고 이를 이용해 정보를 추출함으로써 뛰어난 성능을 입증하였다. 그러나 이것은 유사 문서를 수집하고 검색하기 위해 경로 전체를 인덱스 구성의 단위로 사용함으로써 유사 경로를 인식하지 못하는 문제를 초래하였으며 유사 경로를 인식하지 못함으로 인해 유사 문서 검색의 치명적인 성능 저하가 발생하게 되었다. 이에 따라 본 논문에서는 기존의 XML 검색을 위한 비트맵 인덱싱이 유사 경로를 인식하지 못하는 문제점을 해결하기 위해 유사 경로 탐색을 위한 새로운 비트맵 인덱스를 설계하고 이를 통해 효과적으로 유사 문서를 검색할 수 있는 기법을 제안한다. 제안된 기법은 노드들을 단위로 하는 새로운 비트맵 인덱스를 구성하고 구성된 인덱스의 중심을 통해 유사 경로 탐색을 위한 클러스터들을 선별적으로 검색한다. 그리고 유사 경로 탐색을 통해 추출된 경로들을 유사 문서 검색에 활용함으로써 비트맵 인덱싱의 빠른 성능을 그대로 유지하면서 기존의 XML 검색을 위한 비트맵 인덱싱이 유사 경로를 인식하지 못함으로써 발생하는 유사 문서 탐색의 성능 저하를 효과적으로 해결한다.

  • PDF

Vocabulary Recognition Post-Processing System using Phoneme Similarity Error Correction (음소 유사율 오류 보정을 이용한 어휘 인식 후처리 시스템)

  • Ahn, Chan-Shik;Oh, Sang-Yeob
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.7
    • /
    • pp.83-90
    • /
    • 2010
  • In vocabulary recognition system has reduce recognition rate unrecognized error cause of similar phoneme recognition and due to provided inaccurate vocabulary. Input of inaccurate vocabulary by feature extraction case of recognition by appear result of unrecognized or similar phoneme recognized. Also can't feature extraction properly when phoneme recognition is similar phoneme recognition. In this paper propose vocabulary recognition post-process error correction system using phoneme likelihood based on phoneme feature. Phoneme likelihood is monophone training phoneme data by find out using MFCC and LPC feature extraction method. Similar phoneme is induced able to recognition of accurate phoneme due to inaccurate vocabulary provided unrecognized reduced error rate. Find out error correction using phoneme likelihood and confidence when vocabulary recognition perform error correction for error proved vocabulary. System performance comparison as a result of recognition improve represent MFCC 7.5%, LPC 5.3% by system using error pattern and system using semantic.

An Analysis on Phone-Like Units for Korean Continuous Speech Recognition in Noisy Environments (잡음환경하의 연속 음성인식을 위한 유사음소단위 분석)

  • Shen Guang-Hu;Lim Soo-Ho;Seo Jun-Bae;Kim Joo-Gon;Jung Ho-Youl;Chung Hyun-Yeol
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.123-126
    • /
    • 2004
  • 본 논문은 잡음환경 하에서의 효율적인 문맥의존 음향 모델 구성에 대한 기초연구로서 잡음환경 하에서의 유사 음소단위 수에 따른 연속 음성인식 성능을 비교, 평가한 결과에 대한 보고이다. 기존의 연구[1,2]로부터 연속음성 인식의 경우 문맥종속모델은 변이음을 고려한 39유사음소를 이용한 경우가 48유사음소를 이용하는 것보다 더 좋은 인식성능을 나타냄을 알 수 있었다. 이 연구 결과를 바탕으로 본 연구에서는 잡음환경에서도 효율적인 문맥 의존 음향모델을 구성하기 위한 기초 연구를 수행하였다. 다양한 잡음환경을 고려하기 위해 White, Pink, LAB 잡음을 신호 대 잡음비(Signal to Noise Ratio) 5dB, 10dB, 15dB 레벨로 음성에 부가한 후 각 유사음소단위 수에 따른 연속음성인식 실험을 수행하였다. 그 결과, 39유사음소를 이용한 경우가 48유사음소를 이용한 경우보다 clear 환경인 경우에 약 $7\%$$17\%$ 향상된 단어인식률과 문장 인식률을 얻을 수 있었으며, 각 잡음환경에서도 39유사음소를 이용한 경우가 48유사음소를 이용한 경우보다 평균 적으로 $17\%$$28\%$ 향상된 단어인식률과 문장인식률을 얻을 수 있어 39유사음소 단위가 한국어 연속음성인식에 더 적합하고 잡음환경에서도 유효함을 확인할 수 있었다.

  • PDF

Phoneme Similarity Error Correction System using Bhattacharyya Distance Measurement Method (바타챠랴 거리 측정법을 이용한 음소 유사율 오류 보정 개선 시스템)

  • Ahn, Chan-Shik;Oh, Sang-Yeob
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.6
    • /
    • pp.73-80
    • /
    • 2010
  • Vocabulary recognition system is providing inaccurate vocabulary and similar phoneme recognition due to reduce recognition rate. It's require method of similar phoneme recognition unrecognized and efficient feature extraction process. Therefore in this paper propose phoneme likelihood error correction improvement system using based on phoneme feature Bhattacharyya distance measurement. Phoneme likelihood is monophone training data phoneme using HMM feature extraction method, similar phoneme is induced recognition able to accurate phoneme using Bhattacharyya distance measurement. They are effective recognition rate improvement. System performance comparison as a result of recognition improve represent 1.2%, 97.91% by Euclidean distance measurement and dynamic time warping(DTW) system.

Detailed Recognition of Similar Characters Based on Optimum Linear Transform (최적선형변환에 의한 유사문자의 상세분류인식)

  • 김형원;김성원;양윤모
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.493-495
    • /
    • 2001
  • 본 논문에서는 문자 인식에서 두 단계의 식별과정을 통하여 인식률을 향상시키는 방법에 대하여 연구하였다. 한글 문자인식에서의 어려움은 인식대상 클래스가 많고 유사문자가 많은 반면, 여러 폰트의 글자를 하나의 글자를 하나의 클래스로 할 경우에는 그 문자의 분산이 더욱 커지게 되는 점이다. 따라서 본 연구에서는 문자의 분포를 고려하여 거리를 계산하는 Bayes에 의한 식별 함수를 1단계 인식과정에서 사용하여 1위 후보문자를 인식하였다. 2단계에서는 미리 준비된 1위 후부문자의 유사문자세트의 최적선형변환 공간에서 상세분류를 행하였다. 결과적으로 1단계의 Bayes거리반에 의한 인식률(91.1%)보다도, 또한 처음부터 모든 클래스에 대하여 최적선형변환에 의한 인식률(87.9%)보다 좋은 결과(92.9%)를 얻게되었다. 이로서 1단계의 대규모 문자세트에 대한 대분류에서는 문자의 분포를 고려하는 Bayes에 의한 인식이 유효하고, 2단계의 최적선형변환에 의한 인식은 소수의 유사문자들에 대한 변별력을 높이는데 유효함을 입증하였다.

  • PDF

Hand Gesture Recognition Using Shape Similarity Based On Feature Points Of Contour (윤곽선 특징점 기반 형태 유사도를 이용한 손동작 인식)

  • Yi, Hong-Ryoul;Choi, Chang;Kim, Pan-Koo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.585-588
    • /
    • 2008
  • This paper proposes hand gesture recognition using shape similarity method. For this, we require two steps which are aquisition of Hand area and similarity evaluation. First step is extracting hand area using YCbCr color spare. Then eliminate noise through filter and analyzing histogram. For doing this, we ran measure similarity of hand gesture by applying TSR after getting contour. Finally, we utilize shape similarity for recognizing of hand gesture.

  • PDF

Non-linear Normalization for Pair-wise Discrimination Based On Local Contribution Measure (유사 문자쌍 구분을 위한 지역적 공헌도 기반 비선형 정규화)

  • Ryu, Sang-Jun;Kim, In-Jung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.04a
    • /
    • pp.393-396
    • /
    • 2010
  • 지금까지 필기 변이를 완화하기 위한 다양한 비선형 정규화 방법들이 제안되었으며 실제 인식 시스템에서 상당한 인식률 개선 효과를 나타내었다. 그러나, 필기 한글 인식에 있어서는 필기 변이 외에도 문자간의 높은 유사도로 인해 높은 인식률을 얻는데 어려움을 겪고 있다. 한글과 같이 문자간 유사도가 높은 언어를 효과적으로 인식하기 위해서는 필기 변이를 흡수하는 것뿐 아니라, 유사 문자간의 차이를 정확히 찾아내어 그 차이점을 부각시키는 것이 요구된다. 본 논문에서는 유사 문자간의 차이점을 부각시킬 수 있는 비선형 정규화 방법을 제안한다. 기존의 비선형 정규화 방법들이 영상의 지역적 복잡도를 균일화 함으로써 정규화를 수행했던 것에 반해, 제안하는 방법에서는 유사 문자쌍의 구분에 있어 지역적 공헌도에 기반하여 영상을 정규화한다. 즉, 유사 문자쌍 구분에 공헌도가 높은 지역은 확대하고 그렇지 않은 지역은 축소한다. 그 결과, 문자간에 서로 상이한 지역을 강조 함으로써 유사 문자쌍에 대한 구분력을 높인다. 실험 결과, 제안하는 방법으로 정규화된 영상에서는 유사 문자쌍의 차이점이 확대되었으며, 문자쌍의 구분 성능 또한 향상되었다.

A Musical Symbol recognition By Using Graphical Distance Measures (그래프간 유사도 측정에 의한 음악 기호 인식)

  • Jun, Jung-Woo;Jang, Kyung-Shik;Heo, Gyeong-Yong;Kim, Jai-Hie
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.54-60
    • /
    • 1996
  • In most pattern recognition and image understanding applications, images are degraded by noise and other distortions. Therefore, it is more relevant to decide how similar two objects are rather than to decide whether the two are exactly the same. In this paper, we propose a method for recognizing degraded symbols using a distance measure between two graphs representing the symbols. a symbol is represented as a graph consisting of nodes and edges based on the run graph concept. The graph is then transformed into a reference model graph with production rule containing the embedding transform. The symbols are recognized by using the distance measure which is estimated by using the number of production rules used and the structural homomorphism between a transformed graph and a model graph. the proposed approach is applies to the recognition of non-note musical symbols and the result are given.

  • PDF