• Title/Summary/Keyword: 인산염화

Search Result 59, Processing Time 0.022 seconds

Revealing the Paleo-ocean Environment of OSM-XX in the Western Pacific Magellan Seamount with Mineralogical and Geochemical Properties of Ferromanganese Crust (서태평양 마젤란해산군 OSM-XX 해저산 망간각의 광물학적, 지화학적 특성과 고해양 고환경 복원 연구)

  • Jinsub Park;Kiho Yang
    • Economic and Environmental Geology
    • /
    • v.56 no.1
    • /
    • pp.55-63
    • /
    • 2023
  • Variations in geochemical and mineralogical properties of the ferromanganese(Fe-Mn) crust reflect environmental changes. In the present study, geochemical and mineralogical analyses, including micro X-ray fluorescence and X-ray diffraction, were utilized to reconstruct the paleo-ocean environment of western Pacific Magellan seamount cluster. Samples of the Fe-Mn crust were collected using an epibenthic sledge from the open seamount XX (151° 51.12' 7.2" E and 16° 8.16' 9.6" N, 1557 meters below sea level) in the Western Pacific Magellan Seamount. According to the structure and phosphating status, the Fe-Mn crust of the OSM-XX can be divided into the following: phosphatizated (L4-L5), massive non-phosphatizated (L3), and porous non-phosphatizated (L1-L2) portions. All ferromanganese layers contain vernadite, and owing to the presence of carbonate fluorapatite (CFA), the phosphatizated portion (L4-L5) is rich in Ca and P. The massive non-phosphatizated section (L3) contains high Mn, Ni, and Co, whereas the porous non-phosphatizated portion (L1-L2), which comprises detrital quartz and feldspar, is rich in Fe. Variations in properties of the Fe-Mn crust from the OSM-XX reflect changes in the nearby marine environment. The formation of this crust started at approximately 51.87 Ma, and precipitation of the CFA during the global phosphatization event that occurred at approximately 36-32 Ma highlights an elevated sea level and low temperature during the associated period. The high Mn, Ni, and Co concentrations and elevated Mn/Fe ratios of samples from the massive phosphatizated portion indicate that the oxygen minimum zone (OMZ) was enhanced, and reducing conditions prevailed during the crust formation. The high Fe and low Mn/Fe ratios in the porous portion indicate a weak OMZ and dominantly oxidizing conditions. These data reflect environmental changes following the end of the Mi-1 glacial period in the Miocene-Oligocene boundary. Subsequently, Mn/Fe and Co/Mn ratios increased slightly in the outermost part of Fe-Mn crust because of the enhanced bottom current and OMZ associated with the continued cooling from approximately 9 Ma. However, the reduced carbonate dissolution rate in the Pacific Ocean from approximately 6 Ma decreased the growth rate of the Fe-Mn crust.

Relationship of Magnesium Source and MAP Crystallization Efficiency (마그네슘 공급원과 MAP 결정화 효율과의 관계)

  • Ahn, Johwan
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.1
    • /
    • pp.33-39
    • /
    • 2022
  • Batch experiments were conducted to find out the effects of various types of magnesium compounds on phosphorus recovery by magnesium ammonium phosphate (MAP) crystallization. The phosphorus recovery from the centrate of anaerobic digested sludge was performed using magnesium chloride, magnesium hydroxide and magnesium oxide under different pH (7.5, 8.0 and 8.5) and Mg/P molar ratio (1.0, 1.5, 2.0, 2.5) conditions. The phosphorus recovery rate increased with increasing pH and Mg/P molar ratio in all magnesium compounds. At pH 7.5, magnesium oxide showed the highest phosphorus recovery rate, followed by magnesium hydroxide and magnesium chloride. However, at pH 8.5, more than 90% of phosphorus recovery rate was obtained in all Mg/p molar ratios. Thus, it is expected that magnesium hydroxide and magnesium oxide are able to replace magnesium chloride as a magnesium source in terms of phosphorus recovery efficiency and cost.

노출평가를 위한 TLV 근거 - PHOSPHORUS OXYCHLORIDE (옥시 염화인)

  • Kim, Chi-Nyeon
    • 월간산업보건
    • /
    • s.382
    • /
    • pp.11-14
    • /
    • 2020
  • 눈, 피부 및 점막 자극의 가능성을 최소화하기 위해 옥시 염화인(phosphorus oxychloride)의 직업적 노출기준 TLV-TWA를 0.1ppm(0.63 mg/㎥)으로 권고하였다. 옥시 염화인 독성의 징후 및 증상으로는 두통, 현기증, 식욕 부진, 메스꺼움, 흉통 및 호흡 곤란이 있고 심한 급성 또는 반복 만성 노출에 의해서는 기관지 폐렴, 폐부종 그리고 신장 손상을 유발한다. 옥시 염화인은 물 또는 습한 공기에서 분해되어 염화수소와 인산을 형성한다. 피부, 감작제(SEN), 발암성 표기와 TLV-STEL을 권고하기에 충분한 자료가 없다.

  • PDF

노출평가를 위한 TLV 근거 - Phosphorus pentachloride (오염화인)

  • Kim, Chi-Nyeon
    • 월간산업보건
    • /
    • s.383
    • /
    • pp.9-12
    • /
    • 2020
  • 눈과 호흡기의 자극 가능성을 최소화하기 위해 오염화인(Phosphorus pentachloride)에 대한 직업적 노출기준인 TLV-TWA를 0.1ppm(0.85 mg/㎥)으로 권고하였다. 동물 또는 사람의 오염화인 노출에 대한 독성자료는 매우 제한적이며, 삼염화인(Phosphorus trichloride)과 유사하게 물이나 상대습도가 높은 공기 중에서 염산(Hydrogen chloride)과 인산(Phosphoric acid)으로 가수분해된다. 따라서 삼염화인, 염산 그리고 인산에 대한 TLV Documentation을 참조해야 한다. 피부 흡수(Skin), 감작제(SEN), 발암성 표기에 대한 경고주석과 TLV-STEL을 권고하기에는 유용한 자료가 부족하다.

  • PDF

노출평가를 위한 TLV 근거 - PHOSPHORUS TRICHLORIDE (삼염화인)

  • Kim, Chi-Nyeon
    • 월간산업보건
    • /
    • s.385
    • /
    • pp.9-13
    • /
    • 2020
  • 삼염화인(Phosphorus trichloride)의 노출기준은 눈, 피부, 점막 그리고 호흡기계 기관지 자극의 가능성을 최소화하기 위해 TLV-TWA는 0.2ppm(1.1 mg/㎥), TLV-STEL은 0.5ppm(2.8 mg/㎥)으로 권고하였다. 삼염화인은 직접 피부 접촉 시 심각한 화상을 유발할 수 있으며 공기 중 농도 2ppm~27ppm 범위에서 작업자가 급성 노출되면 인두, 기침, 호흡 곤란 및 심한 천식 기관지염을 유발하는 것으로 보고되었다. 물 또는 습한 공기에서 삼염화인은 염산 및 인산으로 분해된다.(ACGIH의 인산 TLV 문서를 참조하는 것이 필요함). 피부흡수(Skin), 감작제(SEN)의 경고주석과 발암성을 표기하기에는 유용한 자료가 충분하지 않다.

  • PDF

A Study on the Leaching and Recovery of Lithium by Reaction between Ferric Chloride Etching Solution and Waste Lithium Iron Phosphate Cathode Powder (폐리튬인산철 양극재 분말과 염화철 에칭액과의 반응에 의한 리튬의 침출 및 회수에 대한 연구)

  • Hee-Seon Kim;Dae-Weon Kim;Byung-Man Chae;Sang-Woo Lee
    • Resources Recycling
    • /
    • v.32 no.3
    • /
    • pp.9-17
    • /
    • 2023
  • Efforts are currently underway to develop a method for efficiently recovering lithium from the cathode material of waste lithium iron phosphate batteries (LFP). The successful application of lithium battery recycling can address the regional ubiquity and price volatility of lithium resources, while also mitigating the environmental impact associated with both waste battery material and lithium production processes. The isomorphic substitution leaching process was used to recover lithium from spent lithium iron phosphate batteries. Lithium was leached by the isomorphic substitution of Fe2+ in LFP using a relatively inexpensive ferric chloride etching solution as a leaching agent. In the study, the leaching rate of lithium was compared using the ferric chloride etching solution at various multiples of the LFP molar ratio: 0.7, 1.0, 1.3, and 1.6 times. The highest lithium leaching rate was shown at about 98% when using 1.3 times the LFP molar ratio. Subsequently, to eliminate Fe, the leachate was treated with NaOH. The Fe-free solution was then used to synthesize lithium carbonate, and the harvested powder was characterized and validated. The surface shape and crystal phase were analyzed using SEM and XRD analysis, and impurities and purity were confirmed using ICP analysis.

Changing Features of pH at the Cyclic Aggregate According to Mixing Ratio of Sodium Phosphate and Ammonium Chloride (인산나트륨과 염화암모늄의 혼입 비율에 따른 순환골재의 pH 변화특성)

  • Gao, Shan;Lee, Gun-Cheol;Lee, Gun-Young;Chio, Jung-Gu;Ko, Dong-Guen
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.47-48
    • /
    • 2015
  • Recycled aggregate used in a site is strong alkali due to calcium hydroxide attached on its surface. Accordingly, many environmental problems arise. Therefore, as basic research to reduce pH of recycled aggregate, this study tries to reduce the strong alkalinity of recycled aggregate by using mixture solution based on sodium phosphate and ammonium chloride. As a result, original aggregate has the strong alkalinity of pH 11.23, whereas pH of recycled aggregate immersed in mixture solution decreased as more mixture rate increased, and mostly pH 9.8 or less was found.

  • PDF

Study on the Reactivity of Sodium Phosphate Ammonium Chloride pH Reduction Agents (인산나트륨계 염화암모늄 pH저감제의 반응성 검토)

  • Shin, Ki-Don;Gao, San;Lee, Gun-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.105-106
    • /
    • 2017
  • Previous studies have confirmed the performance of pH reduction agents using liquid sodium phosphate based ammonium chloride as a pH reduction agent. In this study, the pH reduction performance considering economical and applicability as a practical stage and the property change analysis for the identification of the reaction mechanism of the pH reduction agent were carried out. As a result, the pH reduction performance at a low rate of the pH reducing agent was confirmed. The specific gravity of CaO decreased significantly after XRF analysis. It is also believed that this reduces the amount of Ca(OH)2 produced and contributes to pH reduction.

  • PDF