• Title/Summary/Keyword: 인발 시험

Search Result 286, Processing Time 0.025 seconds

Pullout and Flexural Performance of Structural Synthetic Fibers by Geometry and Sectional Area Change (구조용 합성섬유의 형상 및 단면적 변호에 따른 부착 및 휨 성능)

  • Won, Jong-Pil;Back, Chul-Woo;Park, Chan-Gi;Han, Il-Yeong;Kim, Bang-Lae
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.5
    • /
    • pp.643-649
    • /
    • 2003
  • The purpose of this study were evaluated to flexural and bond performance by sectional area and geometry change through bond and flexural test of a structural synthetic fiber. Six deformed structural synthetic fibers were investigated and pullout and flexural test was conducted. Included parameters is three different geometries of fiber and two of fiber sectional area. The test result shows that the cycles and amplitude of structural synthetic fiber increased, pullout load and pullout fracture energy decreased and flexural strength increased, if sectional area is same. The sectional area increased, pullout load and pullout fracture energy increased and flexural strength decreased, if cycles and amplitude of structural synthetic fiber is same. Based on test results, structural performance of the concrete could know that is influence by pullout performance of fiber as well as various factor (fiber number, material properties etc).

Pullout Test Results of Geosynthetics using Granite Soil and Standard sand (화강토와 표준사를 이용한 토목섬유의 인발시험결과 비교)

  • Ju, Jae-Woo;Park, Jong-Beom;Kim, Jang-Heung;Song, Chun Seok;Baek, Kyung-Jong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.4 no.2
    • /
    • pp.39-45
    • /
    • 2005
  • New concept called the pullout resistance angle has been used to express the friction, cohesion and passive resistance by pullout test at geosynthetics reinforced soil. And also in order to calculate the pullout area, the distribution area method has been used, which is a method of using the curve of tensile force exerted in geogrid. The distribution area ratio showed nearly the same result in the two kind of soils, the granite soil and the standard soil. The pullout resistance angle showed the greater value than friction angle of soil in case of low confining stress of $0.2kg/cm^2$, while it showed the smaller angle than friction of soil in case of high confining stress of $0.8kg/cm^2$.

  • PDF

Pullout Characteristics of Geogrid with Attached Passive Reinforcement (마찰돌기를 부착한 지오그리드의 인발특성 평가)

  • Moon, Hongduk;Yoo, Chulho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.11
    • /
    • pp.43-51
    • /
    • 2014
  • In this study, a series of pullout experiments were conducted on geogrid with attached passive reinforcement with respect to silt containments. Experiments were performed on man-made sand ground containing different silt of 0 %, 17 %, 35 % under various normal stresses 30 kPa, 60 kPa, 120 kPa respectively. The pullout test results showed that passive reinforcement increased the pullout strength over all silt contained condition and showed up to 20 % increases for same soil condition. The test results converted to the coefficient of interaction of pullout test to investigate the effect of reinforcement and the case of passive reinforcement showed 0.7~1.6 distribution depend on a silt contents. Therefore it is concluded that the overall length of geogrid can be reduced under the low vertical stress conditions.

Moment Resistance Performance Evaluation of Larch Glulam Joint Bonded in Glass Fiber Reinforced Plastic Rods (봉형 GFRP를 삽입접착한 낙엽송 집성재 접합부의 모멘트저항 성능 평가)

  • Lee, In-Hwan;Song, Yo-Jin;Jung, Hong-Ju;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.1
    • /
    • pp.60-67
    • /
    • 2015
  • In order to evaluate the bond performance of domestic larch glulam and the glass fiber reinforced plastic (GFRP) rod, the specimen with the GFRP rod bonded-in domestic larch glulam for pull-out test was produced. The test was carried out using various specimens with different gluing depth, width of glue-line and type of adhesive. The cantilever type rahmen structure specimen with bonded-in GFRP rods was produced based on the result of pull-out test, and its moment resistance performance was compared and examined with the moment resistance performance of slotted-in steel plate specimen. As a result of the pull-out test, the most excellent bond performance was found when the insertion depth of GFRP rods was 5 times larger than the diameter of GFRP rods. When the glue-line thickness was 1 mm, the bond performance improved by 17%~29% in comparison to the bond performance in the case of the glue-line thickness of 2 mm. Also, the bonded strength of the specimen used with poly-urethane adhesive was 2.9~4.0 times greater than the bonded strength of specimen used with resorcinol adhesive. The cantilever type rahmen structure specimen with bonded-in GFRP rods showed the moment resistance performance 0.82 times lower in comparison to the slotted-in steel plate specimen used with the drift pin, but the initial stiffness was similar as 0.93 times.

Load Transfer of Tension and Compression Anchors in Weathered Soil (인장형 앵커와 압축형 앵커의 하중전이에 관한 연구)

  • 김낙경
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.3
    • /
    • pp.59-68
    • /
    • 2001
  • 풍화토 지반에 설치된 그라운드 앵커의 하중전이 현상을 규명하기 위하여 성균관대학교 지반시험장에서 인발시험을 수행하였다. 지반과 구조물을 일체화시키는데 사용하는 앵커는 앵커체와 지반의 마찰력에 의해서 구조물을 지지하는 역할을 하며 앵커의 하중과 변형의 관계를 규명하기 위해서는 앵커의 마찰력 분포의 변화(하중전이)가 중요한 요소가 된다. 하중 재하시 앵커체에 발생하는 하중전이 분포는 앵커의 인발 지지력과 밀접한 관계가 있고 앵커체의 종류(인장형 또는 압축형), 정착장의 길이, 지반 조건 등에 따라 분포 양상이 변하기 때문에 하중전이를 이해하기 위해서는 강선과 그라우트의 하중분포 그리고 앵커 그라우트체와 지반과의 마찰력 분포를 알아야 한다. 앵커의 자유장의 강선에 작용하는 응력, 그라우트체에 작용하는 응력, 그리고 정착장 강선의 응력을 계측하여 강선과 그라우트의 정착응력 및 그라우트와 지반에서의 마찰력 분포를 구함으로써 강선-그라우트-지반의 복합적인 거동에 따른 각 하중 단계마다의 하중전이 분포를 구하였다. 또한 현장시험 결과의 신뢰성 확보를 위하여 수치해석 모델링을 통하여 해석을 수행하여 비교하였다.

  • PDF

Experiments on the Resistant Force of the Trees in Rivers (하천 내 수목의 내력 시험)

  • Lee, Jin-Won;Yu, Dae-Yeong
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.3
    • /
    • pp.211-223
    • /
    • 1997
  • This study was focused on the investigation of the distribution of trees which is an important factor for the improvement of the river environment, and the experimental examination of resistant force of trees to the external forces. The investigation of plant distribution performed in 11 major rivers in Korea showed that the willow family grows spontaneously over the whole country. The field experiments on the resistant force of trees were carried out on the 78 trees of 8 species in 3 different sites to estimate whether pulled out trees damage downstream hydraulic structure. The experiments were performed by the method that a backhoe drew trees and the forces were measured when the trees were overturned and pulled out. The analysis of the experimental results showed that there is a linear correlation between the resistant force and DHB (diameter at breast height).

  • PDF

Effect of Natural Jute Fiber on Bond between Polyolefin Based Macro Fiber and Cement Matrix (폴리올레핀계 매크로 섬유와 시멘트 경화체의 부착특성에 미치는 천연마섬유의 효과)

  • Lee, Jin-Hyung;Park, Chan-Gi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3A
    • /
    • pp.251-260
    • /
    • 2011
  • In this study, the effect of natural jute fiber volume fraction on the bond characteristics of polyolefin based macro fiber in natural jute fiber reinforced cement composites, including bond strength, interface toughness, and microstructure analysis are presented. The experimental results on polyolefin based macro fiber pullout test of different conditions are reported. Natural jute fiber volume fractions ranging from 0.1% to 0.2% are used in the mix proportions. Pullout tests are conducted to measure the bond characteristics of polyolefin based macro fiber from natural jute fiber reinforced cement composites. Test results are found that the incorporation of natural jute fiber can effectively enhance the polyolefin based macro fiber-cement matrix interfacial properties. The bond strength and interface toughness between polyolefin based macro fiber and natural jute fiber reinforced cement composites increases with the volume fraction of natural jute fiber. The microstructural observation confirms the findings on the interface bond mechanism drawn from the fiber pullout test results.

The Evaluation of Pullout Resistance and Installation Damage according to the Shape of Flexible Strip Reinforcement (신장형 띠형 보강재의 형상에 따른 인발저항 및 시공성능 평가 실험 연구)

  • Jeoung, Jaehyeung;Kim, Jaehong
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.321-332
    • /
    • 2021
  • Though development of reinforced earth wall is on the rise recently, safety verification for various methods remains behind which has caused the problems including collapse after installation. This study aims to evaluate the field applicability of the shape of flexible strip reinforcement according to pullout resistance test and field damage test. The test specimens were 3 shape of reinforcement, the typical flexible band reinforcement, developed luged band reinforcement, and band type reinforcement made by cutting geogrid. It was found that reinforcement of type have strengths and weaknesses, respectively. The best type of flexible strip reinforcements can be selected, if the conditions are considered with the installation conditions of the reinforcing earth retaining wall and the particle size of the backfill materials.

Behavior of Bond-type Shallow Anchors in Rock Masses ( I ) - Metamorphic Rock (gneiss) at Taean Test Site - (암반에 근입된 부착형 앵커의 거동특성 (I) - 태안지역 편마암 -)

  • Kim, Dae-Hong;Lee, Dae-Soo;Chun, Byung-Sik;Kim, Byung-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.12
    • /
    • pp.45-55
    • /
    • 2006
  • This paper presents the results of full-scale uplift load tests performed on 30 passive anchors grouted to various lengths at Taean site in Korea. Various rock types were tested, ranging from highly weathered to sound gneiss. Rock anchors were installed over a wide range of rock types and qualities with a fixed anchored depth of $1{\sim}4m$. The majority of installations used SD4O-D51 no high grade steel rebar to induce rock failure prior to rod failure. In many tests, rock failure was reached and the ultimate loads were recorded along with observations of the shape and extent of the failure surface. The test results, the failure mechanisms as well as uplift capacities of rock anchors depend mostly on rock type and quality, embedded fixed length, and the strength of rebar. Based on test results, the main parameters governing the uplift capacity of the rock anchor system were determined.

Pullout Characteristics of MC Anchor in Shale Layer (셰일지반에 설치된 MC앵커의 인발특성)

  • Lee, Bongjik;Kim, Josoon;Lee, Jongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.1
    • /
    • pp.53-61
    • /
    • 2012
  • In this study, the research on MC anchor has been developed as composite type has done. MC anchor exerts bearing pressure on pre-bored hole where the end fixing device is expanded. Therefore, the uplift capacity is to be increased and it has the characteristics that the anchor body is not eliminated from the ground even if the grouting is not carried out properly. Furthermore, it reduces the loss of tension and raises the construction availability by inserting the reinforced bar as well as the anchor cable, while it can improve the long-term stability because the nail is expected to play the role when the loss of the anchor cable is occurred in a long-term. However, because the resistance mechanism of the compound anchor such as MC anchor is different from friction anchor, the estimation method of the uplift capacity by the frictional force of the ground and the grout is not proper. Particularly, in domestic cases, the problem to overestimate or underestimate the uplift capacity is expected because the design method considering the soil characteristics about the compound anchor has not been developed. Therefore, in this study, in order to evaluate the characteristics of MC anchor and a kind of compound anchor, we measured the uplift, the tension and the creep by nine anchors tests in shale ground that the fluctuation of the strength is great. In addition, we analyzed the test result comparing to the result of the general friction anchor and evaluated the characteristics of MC anchor movement to gather the results. As a result of the test, we found the effect that the uplift capacity is increased in shale ground comparing to the general friction anchor.